NONUNIFORM HYPERBOLIC LATTICES AND EXOTIC SMOOTH STRUCTURES

F. T. FARRELL & L. E. JONES

0. Introduction

Let Θ_m denote the group of homotopy *m*-spheres where m > 4. Elements in Θ_m are equivalence classes of oriented manifolds homeomorphic to S^m . Two such manifolds Σ_1^m and Σ_2^m are equivalent provided there exists an orientation-preserving diffeomorphism between them. In this paper, \mathbb{D}^{m+1} and S^m respectively denote the unit ball and unit sphere in \mathbb{R}^{m+1} ; i.e.,

(0.01)
$$\mathbb{D}^{m+1} = \{ x \in \mathbb{R}^{m+1} \mid |x| \le 1 \},\$$
$$S^m = \partial \mathbb{D}^{m+1} = \{ x \in \mathbb{R}^{m+1} \mid |x| \le 1 \}.$$

Kervaire and Milnor proved in [13] that Θ_m is a finite abelian group.

Let M^m be a smooth *m*-dimensional manifold. A possible way to change its smooth structure, without changing its homeomorphism type, is to take its connected sum $M^m \# \Sigma^m$ with a homotopy sphere Σ^m . We showed in [9] that it is sometimes possible to change the smooth structure on a closed (real) hyperbolic manifold M^m in this way and still to have a negatively curved Riemannian metric on $M^m \# \Sigma^m$. But when M^m is noncompact (and connected), this method *never* changes the smooth structure ture on M^m . (See the proof of Corollary 1.5 for an argument verifying this statement.)

We use a different method in this paper, which can sometimes change the smooth structure on a noncompact manifold M^m . The method is to remove an embedded tube $S^1 \times \mathbb{D}^{m-1}$ from M^m and then reinsert it with a "twist". To be more precise, pick a smooth embedding $f: S^1 \times \mathbb{D}^{m-1} \to M^m$ and an orientation-preserving diffeomorphism $\varphi: S^{m-2} \to S^{m-2}$. Then a new smooth manifold $M_{f,\varphi}$ is obtained as a quotient space of the disjoint union

(0.02)
$$S^{1} \times \mathbb{D}^{m-1} \amalg M^{m} - f(S^{1} \times \operatorname{Int} \mathbb{D}^{m-1}),$$

Received September 9, 1991. Both authors were supported in part by the National Science Foundation.