J. DIFFERENTIAL GEOMETRY 37 (1993) 467-503

INDEX THEORY FOR CERTAIN COMPLETE KÄHLER MANIFOLDS

MARK STERN

1. Introduction and notation

Let \overline{M} be a compact Kähler manifold of real dimension n with Kähler form ω' , and let $\mathscr{D} = \mathscr{D}_1 \cup \cdots \cup \mathscr{D}_N \subset \overline{M}$ be a divisor with simple normal crossings. The noncompact manifold $M = \overline{M} - \mathscr{D}$ may be endowed with a complete finite volume metric h with Poincaré growth at the \mathscr{D}_i (see for example [2]) determined by the Kähler form

(1)
$$\omega = T\omega' - \sum_{j=1}^{N} \partial \overline{\partial} \log \log^2 |\sigma_j|^2.$$

Here $|\cdot|$ denotes a Hermitian norm on the line bundle $[\mathscr{D}_j]$, σ_j is a section of $[\mathscr{D}_j]$ defining \mathscr{D}_j , and T is a large real constant. We normalize the Kähler form so that the Kähler form on C corresponding to the usual metric $dx^2 \oplus dy^2$ is $\frac{1}{2}dz \wedge d\overline{z} = -i dx \wedge dy$. Thus the metric determined by a Kähler form ω is given by $(v_1, v_2) = i\omega(v_1, Jv_2)$, where J is the complex structure operator. For a multi-index I, set

(2)
$$\mathscr{D}_I = \bigcap_{i \in I} \mathscr{D}_i$$

The manifold $\mathscr{D}'_I \equiv \mathscr{D}_I - \bigcup_{J \supset I, J \neq I} \mathscr{D}_J$ inherits a complete metric h_I determined by $\omega|_{D_I}$.

Let *E* be a unitary flat bundle over *M*, and *F* a hermitian holomorphic bundle over *M*. Denote by $H'_2(M, h, E)$ the L^2 cohomology of (M, h) with coefficients in *E*. The cup product pairing defines a quadratic form *Q* on $H_2^{n/2}(M, h, E)$. When this group is finite-dimensional, we call the signature of *Q* the L^2 -signature of (M, h, E). We define the L^2 -Euler characteristic of (M, h) to be $\sum_p (-1)^p \dim H_2^p(M, h, C)$, when each of these groups is finite dimensional. Similarly, given a hermitian

Received November 6, 1990 and, in revised form, November 13, 1991. Partially supported by a National Science Foundation Postdoctoral Research Fellowship and a Presidential Young Investigator Award.