A NUMERICAL CRITERION FOR VERY AMPLE LINE BUNDLES

JEAN-PIERRE DEMAILLY

Abstract

Let X be a projective algebraic manifold of dimension n and let L be an ample line bundle over X. We give a numerical criterion ensuring that the adjoint bundle $K_{X}+L$ is very ample. The sufficient conditions are expressed in terms of lower bounds for the intersection numbers $L^{p} \cdot Y$ over subvarieties Y of X. In the case of surfaces, our criterion gives universal bounds and is only slightly weaker than I. Reider's criterion. When $\operatorname{dim} X \geq 3$ and codim $Y \geq 2$, the lower bounds for $L^{p} \cdot Y$ involve a numerical constant which depends on the geometry of X. By means of an iteration process, it is finally shown that $2 K_{X}+m L$ is very ample for $m \geq 12 n^{n}$. Our approach is mostly analytic and based on a combination of Hörmander's L^{2} estimates for the operator $\bar{\partial}$, Lelong number theory and the Aubin-Calabi-Yau theorem.

1. Introduction

Let L be a holomorphic line bundle over a projective algebraic manifold X of dimension n. We denote the canonical line bundle of X by K_{X} and use an additive notation for the group $\operatorname{Pic}(X)=H^{1}\left(X, \mathscr{O}^{*}\right)$. The original motivation of this work was to study the following tantalizing conjecture of Fujita [23]: If $L \in \operatorname{Pic}(X)$ is ample, then $K_{X}+(n+2) L$ is very ample; the constant $n+2$ would then be optimal since $K_{X}+(n+1) L=\mathscr{O}_{X}$ is not very ample when $X=\mathbf{P}^{n}$ and $L=\mathscr{O}(1)$. Although such a sharp result seems at present out of reach, a consequence of our results will be that $2 K_{X}+m L$ is always very ample for L ample and m larger than some universal constant depending only on n.

Questions of this sort play a very important role in the classification theory of projective varieties. In his pioneering work [9], Bombieri proved the existence of pluricanonical embeddings of low degree for surfaces of general type. More recently, for an ample line bundle L over an algebraic surface S, I. Reider [39] obtained a sharp numerical criterion ensuring that the adjoint line bundle $K_{X}+L$ is very ample; in particular,

[^0]
[^0]: Received June 26, 1990 and, in revised form May 7, 1991.

