THE HEAT TRACE ON SINGULAR ALGEBRAIC THREEFOLDS

VISHWAMBHAR PATI

1. Introduction

Let X be a complex projective algebraic threefold with isolated singularity set Σ . Consider the Laplacian $\overline{\Delta} = \overline{\delta d}$ with respect to the induced Fubini-Study metric on the noncompact smooth locus $X - \Sigma$ acting on square integrable functions. In [7], we showed that $\overline{\delta} = \overline{d}_0^* = \overline{d}^*$, which implied the selfadjointness of the Laplacian $\overline{\Delta}$. The main result of this paper is

1.1. **Theorem.** The trace of the heat operator $\overline{e}^{t\overline{\Delta}}$ is finite and satisfies

$$\operatorname{Tr} e^{-t\overline{\Delta}} \leq Kt^{-3}$$

for $t \in (0, T]$, suitable T > 0, and K > 0.

1.2. **Remarks.** The corresponding facts for curves and surfaces are respectively due to Cheeger [2], [3] and Nagase [6].

2. Reduction to local problems

Let X, Σ be as above. Then by the main results of §2,3 of [7], we may decompose

(1)
$$X - \Sigma = M \cup \left(\bigcup_{\alpha=1}^{m} W_{\alpha}^{b}\right),$$

where $M = \{x \in X - \Sigma: d(x, \Sigma) \ge b\}$ for some fixed $b \in (0, 1)$, and the W_{α}^{b} are sets of the type W_{I}^{b} , W_{II}^{b} , W_{III}^{b} , which were introduced in [7, §2, 3]. Similarly, the ε -truncation X_{ε} of X is defined as

(2)
$$X_{\varepsilon} = \{x \in X - \Sigma : d(x, \Sigma) \ge \varepsilon\} = M \cup \left(\bigcup_{\alpha=1}^{m} W_{\alpha}^{b}(\varepsilon)\right),$$

Received March 6, 1990 and, in revised form, December 4, 1991.