THE EXISTENCE OF ANTI-SELF-DUAL CONFORMAL STRUCTURES

CLIFFORD HENRY TAUBES

1. Introduction

The following is a salient feature of 4-dimensional Riemannian geometry: The conformal class of a Riemannian metric on an oriented 4manifold defines a splitting

(1.1)
$$\Lambda^2 T^* \simeq \Lambda^2_+ T^* \oplus \Lambda^2_- T^*.$$

The bundles $\Lambda_{\pm}^2 T^*$ are real, 3-plane bundles whose sections are called self-dual (+) or anti-self-dual (-) 2-forms.

With the metric's help, the Riemannian curvature can be thought of as a section of the symmetric endomorphisms of $\Lambda^2 T^*$. Then, with respect to (1.1), this section, \mathscr{R} , has the form

(1.2)
$$\mathscr{R} = \left(\begin{array}{c|c} \mathscr{W}_{+} + \frac{s}{12} \cdot 1 & B \\ \hline & \\ \end{array} \right) \\ B^{T} & \mathscr{W}_{-} + \frac{2}{12} \cdot 1 \end{array} \right).$$

Here, s is the usual scalar curvature, B is the traceless Ricci tensor (in an unusual guise), and the \mathscr{W}_{\pm} are, respectively, the self-dual and anti-self-dual Weyl tensors. (The metric is Einstein if B = 0, and it is conformally flat if \mathscr{W}_{\pm} and \mathscr{W}_{-} are both zero.)

(a) Existence. Given that this preamble is understood (and [1] is the canonical reference), it can be said that the purpose of this article is to discuss metrics with $\mathscr{W}_{+} = 0$. We give the main result:

Theorem 1.1. Let M be a smooth, compact, oriented, 4-dimensional manifold. Use \mathbb{CP}^2 to denote complex projective 2-space with the opposite of its complex orientation. Use # to denote the operation of connect sum. For all sufficiently large N, $M_N \equiv M \#_N \mathbb{CP}^2$ admits a metric with $\mathcal{W}_+ \equiv 0$.

Remark that the connect sum of manifolds X and Y is obtained from their disjoint union by cutting out an open ball in X and one in Y and then identifying the two resulting boundary 3-spheres.

Received September 16, 1991.