L₂-COHOMOLOGY OF KÄHLER VARIETIES WITH ISOLATED SINGULARITIES

LESLIE SAPER

0. Introduction

Let V be a complex projective variety. If V is smooth, we may apply the de Rham-Hodge theory to represent the cohomology by harmonic forms. As a consequence of this and the Kähler identities, we obtain a Hodge decomposition (or *Hodge structure*) on the cohomology,

$$H^{k}(V; \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}, \qquad H^{p,q} = \overline{H^{q,p}}.$$

When V is singular, such a decomposition no longer exists in general. However, by imposing restrictions on the intersections of chains with singular strata, Goresky and MacPherson [21], [22] defined an alternate cohomology theory for singular spaces. This *intersection cohomology*, $IH'(V; \mathbb{C})$, has many of the properties of ordinary cohomology on manifolds. For example, there is a nondegenerate Poincaré duality pairing, and by using the theory of \mathscr{D} -modules, Saito [38]-[40] (see also [41]) has shown that $IH'(V; \mathbb{C})$ admits a natural Hodge decomposition. (We are always referring to the *middle perversity* intersection cohomology. For an excellent historical introduction to intersection homology theory and its many ramifications, see Kleiman's article [28]; for an overview of recent advances in Hodge theory, see [10].)

It is natural to try to represent intersection cohomology analytically by a de Rham-type theory, and obtain another, more classical, proof of the existence of a Hodge decomposition on $IH'(V; \mathbb{C})$. In a number of contexts [11], [52] it has been conjectured that the appropriate de Rham theory to consider is the L_2 -cohomology of some metric on $V \setminus \operatorname{Sing}(V)$, the set of regular points of V. Given a Riemannian metric on $V \setminus \operatorname{Sing}(V)$, the L_2 -cohomology $H'_{(2)}(V \setminus \operatorname{Sing}(V))$ is the cohomology of the complex of L_2 differential forms whose exterior derivatives are also L_2 . L_2 -cohomology

Received July 27, 1990 and, in revised form, May 20, 1991. The author is an Alfred P. Sloan Research Fellow; this work was supported in part by National Science Foundation Grants DMS-8504029, DMS-8705849, and DMS-8957216.