C^α-COMPACTNESS FOR MANIFOLDS WITH RICCI CURVATURE AND INJECTIVITY RADIUS BOUNDED BELOW

MICHAEL T. ANDERSON & JEFF CHEEGER

0. Introduction

In this note, we consider the class of Riemannian *n*-manifolds (M, g) which have a lower bound on the Ricci curvature and on the injectivity radius

(0.1)
$$\operatorname{Ric}_{\mathcal{M}} \geq -\lambda, \quad \operatorname{inj}_{\mathcal{M}} \geq i_0.$$

Our main result is that the C^{α} geometry of the metric g and the $C^{1,\alpha}$ topology of the manifold M are controlled by these bounds. More precisely, we obtain

Theorem 0.1. Let (M, g) be a compact Riemannian manifold satisfying the bounds

(0.2)
$$\operatorname{Ric}_{M} \geq -\lambda, \quad \operatorname{inj}_{M} \geq i_{0}, \quad \operatorname{vol}_{M} \leq V.$$

Then for all $\alpha < 1$ and Q > 1, there is a finite atlas of harmonic coordinate charts $F_{\nu}: U_{\nu} \to \mathbb{R}^{n}$ for M, having the following properties:

(1) The domains U_{ν} are of the form $U_{\nu} = F_{\nu}^{-1}(B(r_h))$, $B(r_h)$ a ball in \mathbb{R}^n , of radius r_h , satisfying

$$r_h \geq C(\lambda, i_0, n, \alpha, Q).$$

Further, the domains $F_{\nu}^{-1}(B(r_h/2))$ cover M.

(2) The overlaps $F_{\mu\nu} = F_{\mu} \circ F_{\nu}^{-1}$ are controlled in the $C^{1,\alpha}$ topology, *i.e.*,

$$||F_{\mu\nu}||_{C^{1,\alpha}} \leq C(\lambda, i_0, n, \alpha, Q).$$

Received April 16, 1990. This research was partially supported by National Science Foundation Grants.