UNCOUNTABLY MANY EXOTIC \mathbf{R}^{4} 'S IN STANDARD 4-SPACE

STEFANO DEMICHELIS \& MICHAEL H. FREEDMAN

Abstract

It is known that the standard (Euclidean) smooth structure on 4 -space when restricted to certain open subsets homeomorphic to \mathbf{R}^{4} gives a smooth structure which is not diffeomorphic to the standard one. This behavior is a consequence of Donaldson's counterexample [5] to the smooth 5-dimensional h-cobordism theorem and was noticed (in anticipation of Donaldson's result) by A. Casson and the second named author (see [14, Theorem 3, Chapter 14]). Taubes [24] developed a technically demanding theory of the Yang-Mills equation on "asymptotically end periodic" 4-manifolds in part to verify that a known family of exotic \mathbf{R}^{4} 's were mutually distinct. That family lays smoothly in $S^{2} \times S^{2}$ but not \mathbf{R}^{4}. We combine ideas from the above-mentioned papers to address a nested family of \mathbf{R}^{4} homeomorphs called "ribbon \mathbf{R}^{4} 's" lying in \mathbf{R}^{4} standard. There are continuum many pairwise distinct smooth structures represented within this family.

0. Introduction

Our philosophy is that any Donaldson-style invariant [5] can be defined on an "end periodic" manifold and these invariants commute with the passage between a compact manifold and such noncompact geometric limits. In principle the Γ-invariant or "polynomial-invariant" is suitable for this discussion; however, we carry out the analysis in detail only for D. Kotschick's "simpler" Φ-invariant [16]. Kotschick distinguishes a certain algebraic surface, the Barlow surface B, from the rational surface $Q=C P^{2} \# 8 \overline{C P}^{2}$ by showing that $|\Phi(B)| \geq 4$ and $\Phi(Q)=0$. Taubes paper [24] on the self-dual Yang-Mills equation on end periodic 4-manifolds provides much of the technical foundation for our extension.

It is known that B and Q are smoothly h-cobordant (and therefore homeomorphic); that is, there exists ($W^{5} ; B, Q$) with $\partial W^{5}=B \amalg-Q$, and the inclusions $B \hookrightarrow W^{5}, Q \hookrightarrow W^{5}$ are homotopy equivalences. It is, by now, a standard idea that W^{5} should be analyzed with a mind toward

[^0]
[^0]: Received June 11, 1990 and, in revised form, March 20, 1991. The authors were supported in part by National Science Foundation Grant DMS-89-01412.

