ALMOST CONVEX GROUPS, LIPSCHITZ COMBING, AND π_1^{∞} FOR UNIVERSAL COVERING SPACES OF CLOSED 3-MANIFOLDS

V. POÉNARU

Abstract

If $\pi_1 M^3$ is almost convex, then $\pi_1^{\infty} \widetilde{M}^3 = 0$. Under a mild restriction, the same conclusion holds if $\pi_1 M^3$ admits a Lipschitz combing in the sense of Thurston.

1. Introduction

The main result of this paper is that if M^3 is a closed 3-manifold such that $\pi_1 M^3$ is almost convex, then the universal covering space \widetilde{M}^3 is simply-connected at infinity. We start by recalling what "almost convex" means.

We consider a finitely generated group G and a specific finite set of generators $B = B^{-1}$ for G. To this, we can attach the Cayley graph $\Gamma = \Gamma(G, B)$. For each $g \in G$, we will denote by ||g|| the minimal length of a word with letters in B expressing g. We also define $d(g, h) = ||g^{-1}h|| = ||h^{-1}g||$.

For any positive integer, we can consider the ball of radius n in Γ ,

(1.1)
$$B(n) = \{x \in \Gamma \text{ such that } \|x\| \le n\},\$$

and the sphere of radius n in Γ ,

(1.2)
$$S(n) = \{x \in \Gamma \text{ such that } \|x\| = n\}.$$

Following J. Cannon [3], we will say that the Cayley graph $\Gamma = \Gamma(G, B)$ is *k*-almost convex (for $k \in Z^+$) if there exists an $N = N(k) \in Z^+$ with the property that for any *n* if $x, y \in S(n)$ are such that $d(x, y) \leq k$, then x and y can be joined in B(n) by a path of length $\leq N(k)$. If, for

Received March 5, 1990 and, in revised form, November 20, 1990.

Key words and phrases. Almost convex groups, Lipschitz combing, Cayley graph, universal covering space, π_1^{∞} , equivalence relation commanded by the singularities $(\Psi(f))$, equivalence relation commanded by the double points $(\Phi(f) \supset \Psi(f))$.