SOME NEW HARMONIC MAPS FROM B^3 TO S^2

CHI-CHEUNG POON

I. Introduction

It is well known that $u_0(x) = x/|x|$ is the unique minimizer of the energy functional $\int_{B^3} |\nabla u|^2 dx$ among maps $u \in H^1(B^3, S^2)$ such that u(x) = x for $x \in \partial B^3$ [2] where B^3 and S^2 are the unit 3-ball and 2sphere respectively. Such an energy minimizer is a *weakly harmonic* map [4]. By minimizing a "relaxed energy", F. Bethuel, H. Brezis, and J.-M. Coron [1] proved that there exist infinitely many weakly harmonic maps for any nonconstant boundary data. But the regularity of such weakly harmonic maps is still unknown. Here we use a different approach to obtain the following result.

Theorem. For any x_0 in \overline{B}^3 , there is a harmonic map $u: B^3 \to S^2$ such that

(i)
$$u(x) = x$$
 on ∂B^3 ;

(ii) u is smooth in $\overline{B}^3 \sim \{x_0\}$, i.e., x_0 is the only singularity of u.

Let r, α , and z be cylindrical coordinates in \mathbb{R}^3 , i.e., $x = r \cos \alpha$, $y = r \sin \alpha$. A map $u: B^3 \to S^2$ is called, as in [5], *axially symmetric* if in r, α , z

(1)
$$u(r, \alpha, z) = (\cos \alpha \sin \varphi, \sin \alpha \sin \varphi, \cos \varphi)$$

for some real valued function $\varphi(r, z)$. Using (1), we can simplify the formula for the energy of an axially symmetric map u,

$$\int_{B^3} |\nabla u|^2 dx = 2\pi \int_D r\left(\frac{\partial \varphi}{\partial r}\right) + r\left(\frac{\partial \varphi}{\partial z}\right)^2 + \frac{\sin^2 \varphi}{r} dr dz,$$

where $D = \{(r, z) : r^2 + z^2 < 1, r > 0\}$.

For any smooth $\varphi: D \to \mathbf{R}$, define

$$E(\varphi) = 2\pi \int_D r \left(\frac{\partial \varphi}{\partial r}\right)^2 + r \left(\frac{\partial \varphi}{\partial z}\right)^2 + \frac{\sin^2 \varphi}{r} \, dr \, dz.$$

Received December 18, 1989 and, in revised form, February 22, 1990.