T-EQUIVARIANT K-THEORY OF GENERALIZED FLAG VARIETIES

BERTRAM KOSTANT \& SHRAWAN KUMAR

0. Introduction

To any (not necessarily symmetrizable) generalized $l \times l$ Cartan ma$\operatorname{trix} A$, one associates a Kac-Moody algebra $\mathfrak{g}=\mathfrak{g}(A)$ over \mathbf{C} and group $G=G(A) . G$ has a "standard unitary form" K. If A is a classical Cartan matrix, then G is a finite dimensional semi-simple simply-connected algebraic group over \mathbf{C} and K is a maximal compact subgroup of G. We refer to this as the finite case. In general, one has subalgebras of $\mathfrak{g}: \mathfrak{h} \subset \mathfrak{b} \subseteq \mathfrak{p}$, the Cartan subalgebra, the Borel subalgebra, and a parabolic subalgebra, respectively. One also has the corresponding subgroups: $H \subset B \subseteq P$, the complex maximal torus, the Borel subgroup, and a parabolic subgroup, respectively. We denote by T the compact maximal torus $H \cap K$ of K. Let W be the Weyl group associated to $(\mathfrak{g}, \mathfrak{h})$ and let $\left\{r_{i}\right\}_{1 \leq i \leq l}$ denote the set of simple reflections. The group W operates on the compact maximal torus T (as well as on H) and hence on the group algebra $R(T):=\mathrm{Z}[X(T)]$ of the character group $X(T)$ of T and also on the quotient field $Q(T)$ of $R(T)$.

For any W-field F, we can form the smash product F_{W} of the group algebra $\mathbf{Z}[W]$ with F. In [19] we took, for F, the field $Q=Q\left(\mathfrak{h}^{*}\right)$ of all the rational functions on \mathfrak{h} and defined an appropriate subring $R \subset Q_{W}$, and showed that R and its "appropriate" dual Λ, along with a certain R-module structure on Λ, replace the study of the cohomology algebra of G / B together with the various operators defined on $H^{*}(G / B)$. Hence the problem of understanding $H^{*}(G / B)$, especially the cup product structure and other operators on $H^{*}(G / B)$, reduced to a purely combinatorial (and hopefully more tractable) problem of understanding the ring R and its "dual" Λ, defined purely and explicitly in terms of the Coxeter group W and its representation on \mathfrak{h}^{*}.

[^0]
[^0]: Received February 4, 1988 and, in revised form, March 21, 1989. The first author was supported in part by National Science Foundation Grants MCS 8105633 , and the second by DMS 8403203.

