THE VIRTUAL SOLVABILITY OF THE FUNDAMENTAL GROUP OF A GENERALIZED LORENTZ SPACE FORM

G. TOMANOV

Introduction

Let $Aff_n(\mathbb{R})$ denote the group of all affine transformations of the real affine vector space \mathbb{R}^n . It is well known that $\operatorname{Aff}_n(\mathbb{R})$ is isomorphic to the semidirect product $\operatorname{Gl}_n(\mathbb{R}) \ltimes \mathbb{R}^n$, where \mathbb{R}^n is identified with the group of all translations of \mathbb{R}^n . Let $\pi: \operatorname{Aff}_n(\mathbb{R}) \to \operatorname{Gl}_n(\mathbb{R})$ be the natural projection. A subgroup $\Gamma \subset \operatorname{Aff}_n(\mathbb{R})$ is called *G*-linear if $\pi(\Gamma) \subset G$, where *G* is a real algebraic group, i.e., G is the group $G(\mathbb{R})$ of \mathbb{R} -points of an algebraic subgroup G of $\operatorname{Gl}_n(\mathbb{C})$ defined over \mathbb{R} . Let G^0 be the connected component of G, and let $G^0 = SR$ be the Levi decomposition of G^0 , where R is the solvable radical of G, and S is a maximal semisimple subgroup of G^0 . Let $S = S_1 S_2 \cdots S_r$ be an almost direct product of simple Lie subgroups S_i . The group Γ is called a group of generalized Lorentz motions if every S_i is a group of (real) rank $\operatorname{rk}_{\mathbb{R}} S_i \leq 1$. (By a rank of S_i we mean the dimension of any maximal \mathbb{R} -split torus in the Zariski closure S_i of S_i in G.) Assume that Γ acts properly discontinuously on \mathbb{R}^n (i.e., the set $\{\gamma \in \Gamma | \gamma K \cap K \neq 0\}$ is finite for every compact $K \subset \mathbb{R}^n$), and that the quotient \mathbb{R}^n/Γ is compact. In the case where Γ is a group of Lorentz motions (that is G = SO(n - 1, 1)) it was proved in [9] that Γ is a virtually solvable group, i.e., Γ contains a solvable subgroup of finite index. The aim of the present paper is to prove similar results for all groups Γ of generalized Lorentz motions.

Theorem A. Let Γ be a *G*-linear subgroup of $\operatorname{Aff}_n(\mathbb{R})$. Assume that (a) Γ acts properly discontinuously on \mathbb{R}^n , (b) \mathbb{R}^n/Γ is compact, and (c) Γ is a group of generalized Lorentz motions. Then Γ is a virtually solvable group.

According to a result of G. A. Margulis [15] if Γ is a group of generalized Lorentz motions which acts properly discontinuously on \mathbb{R}^n but \mathbb{R}^n/Γ is not compact, then Γ is not necessarily a virtually solvable group.

Received February 12, 1989 and, in revised form, July 17, 1989.