A REMARKABLE SYMPLECTIC STRUCTURE

LARRY BATES & GEORGE PESCHKE

Abstract

An explicit example of an exotic symplectic structure on R^4 is given.

1. Introduction

An old theorem due to Darboux [1] asserts that about each point x in any symplectic manifold (M, ω) there exists a neighborhood of x and a local chart (q^a, p_b) such that the symplectic form ω has the local representation

$$\omega = dq^a \wedge dp_a.$$

Naturally enough, one could try to make the domain of such a chart as large as possible. It can happen that one may not be able to enlarge the domain of such a symplectic chart beyond a certain size. This obstruction is of a geometric nature and has only come to light through recent work of Gromov [2].

To explain this, let ω_0 be the standard symplectic structure on \mathbb{R}^{2n} and let $N \subset \mathbb{R}^{2n}$ be any closed Lagrangian submanifold.

Theorem (Gromov). $[\omega_0] \neq 0$ in $H^2(\mathbb{R}^{2n}, N; \mathbb{R})$, the second relative de Rham cohomology group of the pair (\mathbb{R}^{2n}, N) .

Being closed, ω_0 has a potential ψ on R^{2n} , i.e., $d\psi = \omega_0$. Furthermore, $[\psi|N] \neq 0$ in $H^1(N; R)$.

In this paper we explicitly endow a manifold M diffeomorphic to R^4 with a symplectic form ω admitting a Lagrangian torus T such that $[\omega] = 0$ in $H^2(M, T; R)$. But then Gromov's theorem tells us that (M, ω) does not symplectically embed in (R^4, ω_0) . Thus ω is an exotic symplectic structure on M.

We note that the existence of exotic symplectic geometries was already known to Gromov [2], although the techniques used in the course of the proof do not permit explicit construction of an example.

Received June 2, 1989.