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COLLAPSING RIEMANNIAN MANIFOLDS WHILE
KEEPING THEIR CURVATURE BOUNDED. II

JEFF CHEEGER & MIKHAEL GROMOV

0. Introduction

This is the second of two papers concerned with the situation in which
the injectivity radius at certain points of a riemannian manifold is "small"
compared to the curvature.

In Part I [3], we introduced the concept of an F-structure of positive
rank. This generalizes the notion of a torus action, for which all orbits
have positive dimension. We showed that if a compact manifold, Yn ,
admits an F-structure of positive rank, then it also admits a family of rie-
mannian metrics, gδ , whose sectional curvatures are uniformly bounded
independent of δ and for which the injectivity radius, i (gδ) goes uni-
formly to zero at all points y e Yn , as δ -» 0. Such a sequence is said to
collapse with bounded curvature (see Part I for variants and refinements of
the above result).

In the present paper, we prove a kind of strengthened converse to the
collapsing theorem. If y e Yn , let \K(y)\ denote the maximum of the
absolute value of the sectional curvature over τ e A2(Ty(Yn)).

Theorem 0.1. There exist constants c{(n), c2(n) > 0 such that if Yn

is a complete riemannian manifold, then Yn = Yjt u Y£, where

(1) Yp is an open set which admits an F-structure of positive rank,
whose orbits, @y, have diameter satisfying diam(^) <cx{n)iy,

(2) for all y eY£ , there exists w in the ball Bt jc^n){y) with

(0.2) \K(w)\l/2iy>c2(n).

Remark 0.3. For the F-structure we construct, the local actions almost
preserve the metric. By applying Lemma 1.3 of [3], we can replace the
metric on Yn by a nearby metric which is invariant for the F-structure
o n Yn
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