HARMONIC MAPS INTO LIE GROUPS (CLASSICAL SOLUTIONS OF THE CHIRAL MODEL)

KAREN UHLENBECK

Dedicated to R. F. Williams

Table of Contents

PAR	КТ Ι	2
1.	Basic formulas and characteristic notation	2
2.	The canonical associated linear problem or Lax pair	5
3.	The Dolan representation	8
4.	The variation formulas for the extended solution 1	2
5.	The representation of $\mathscr{A}(S^2, G)$ on holomorphic maps $\mathbb{C}^* \to G$	4
6.	The representation of $\mathscr{A}_{\mathbf{R}}(S^2, G)$ on extended harmonic maps and Backlund	
		0
7.		3
8.	Harmonic maps into Grassmannians 2	24
PART II		7
9.		27
10.	The fixed points of the S^1 action	61
11.	Global conservation laws and finiteness	35
12.	Adding a uniton by singular Backlund transformation	37
13.	The minimal uniton number 4	10
14.	The unique factorization theorem 4	12
15.	Complex Grassmannian manifolds again 4	15
16.	Additional questions and problems 4	17

This paper deals with two aspects of the algebraic structure of \mathcal{M} , the space of harmonic maps from a simply-connected 2-dimensional domain (either Riemannian or Lorentzian) into a real Lie group $G_{\mathbf{R}}$, the real form of a complex group G. In the language of theoretical physics, we study the classical solutions of the chiral model. In the first part of the paper (§§1-8) we construct a representation of the loop group $\mathscr{A}(S^1, G_{\mathbf{R}})$ on \mathscr{M} corresponding to the Kac-Moody Lie algebra of infinitesimal deformations observed by Dolan [8]. Here the main theorems are the description of the action on \mathscr{M} (Theorem 6.1) and the description of the action of a subgroup on the space of harmonic maps into Grassmannians (Theorem 8.3). In the second part of the paper (§§9-15) we restrict to a theory which applies only when Ω is a 2-dimensional, simply-connected, *Riemannian* domain and

Received February 25, 1985, and in revised form, June 6, 1988.