THE CONSTRUCTION OF ALE SPACES AS HYPER-KÄHLER QUOTIENTS

P. B. KRONHEIMER

1. Introduction

According to the definition given by Calabi [4], a Riemannian manifold (X, g) is hyper-Kähler if it is equipped with three automorphisms I, J, K of the tangent bundle which satisfy the relations of the quaternion algebra \mathbf{H} and are covariant constant with respect to the Levi-Civita connection:

$$
I^{2}=J^{2}=K^{2}=-1, \quad I J=-J I=K, \quad \nabla I=\nabla J=\nabla K=0
$$

These conditions imply in particular that each of I, J and K defines an integrable complex structure on X and that the metric g is Kähler with respect to all three; the three Kähler forms $\omega_{1}, \omega_{2}, \omega_{3}$ are therefore closed, giving three symplectic structures to X. In dimension 4, a simply-connected Riemannian manifold admits such a hyper-Kähler structure precisely when the Riemann curvature tensor is either self-dual or anti-self-dual. A complete, hyper-Kähler 4-manifold is therefore a self-dual, positive-definite solution to Einstein's equations in vacuum (a self-dual gravitational instanton), and it is with examples of such manifolds that we are concerned.

This paper describes the construction of a particular family of hyper-Kähler 4-manifolds, the so-called ALE spaces [6]. ALE stands for asymptotically locally Euclidean and describes a Riemannian 4-manifold with just one end which at infinity resembles a quotient \mathbf{R}^{4} / Γ of Euclidean space \mathbf{R}^{4} by a finite group Γ of identifications. The Riemannian metric g is required to approximate the Euclidean metric up to $O\left(r^{-4}\right)$,

$$
g^{i j}=\delta^{i j}+O\left(r^{-4}\right)
$$

with appropriate decay in the derivatives of $g^{i j}$. A large class of such ALE spaces was discovered by Gibbons and Hawking [7]. For each integer $k \geq 2$, they constructed a family of spaces, depending on $3 k-6$ parameters, which had self-dual curvature and resembled at infinity a quotient of \mathbf{R}^{4} by a cyclic group Γ of order k. These 'multi-Eguchi-Hanson' metrics were obtained also by Hitchin [8], who derived them by an application of Penrose's nonlinear

[^0]
[^0]: Received June 12, 1987 and, in revised form, January 29, 1988.

