THE SYMPLECTIC STRUCTURE OF KÄHLER MANIFOLDS OF NONPOSITIVE CURVATURE

DUSA McDUFF

Abstract

In this note we show that the Kähler form on a simply connected complete Kähler manifold W of nonpositive curvature is diffeomorphic to the standard symplectic form on \mathbb{R}^n . This means in particular that the symplectic structure on a Hermitian symmetric space of noncompact type is standard. We also show that if L is a totally geodesic proper, connected Lagrangian submanifold of a complete Kähler manifold Wof nonpositive curvature, then W is symplectomorphic to the cotangent bundle T^*L with its usual symplectic structure provided that the fundamental group $\pi_1(W, L)$ vanishes. The proofs use a comparison theorem due to Greene & Wu and Siu & Yau.

1. Introduction

Let W be a Kähler manifold with a pole, i.e., a point p at which the exponential map is a diffeomorphism from the tangent space W_p onto W. Following [2], we will call a 2-dimensional subspace of the tangent space W_x a radial plane, if either x = p or the subspace contains the tangent to the unique geodesic from p through x. The radial curvature of (W, p) is then the restriction of the sectional curvature function to the radial planes. Our first result is

Theorem 1. Let (W, p) be a Kähler manifold with a pole such that the radial curvature is nonpositive. Then there is a diffeomorphism from W to \mathbb{R}^n which takes the Kähler form ω on W to the standard symplectic form on \mathbb{R}^n .

Note that any simply connected, complete Kähler manifold with nonpositive curvature satisfies the hypotheses. There are many such manifolds (see [1] for example). Observe also that the symplectomorphism which we construct from W to \mathbb{R}^n is not in general holomorphic, for if it were it would preserve the Kähler metric.

Now suppose that L is a totally geodesic, connected and properly embedded Lagrangian submanifold of a complete Kähler manifold (W, ω) of nonpositive

Received April 23, 1987 and, in revised form, October 26, 1987. The author was partially supported by National Science Foundation grant DSM-8504355.