CORRECTION TO
 "COMPLETE SURFACES OF FINITE TOTAL CURVATURE"

BRIAN WHITE

Let S be a compact subset of a smooth complete two-dimensional riemannian manifold M. Let

$$
\Omega(r)=\{x \in M: \operatorname{dist}(x, S)<r\}, \quad \Gamma(r)=\partial \Omega(r),
$$

and let $L(r)$ be the length of $\Gamma(r),[2$, equation (2), p. 317] gives a formula for the $L^{\prime}(r)$. Peter Li has noticed that the formula does not always hold. However, the left-hand side of the equation is always less than or equal to the right-hand side, and the inequality suffices for the applications in the rest of the paper. The correct formula (which implies the inequality) is as follows.

Proposition. If $\Gamma(r)$ is a piecewise smooth curve with exterior angles $\theta_{i}(1 \leq i \leq n)$, then

$$
L^{\prime}(r t)=2 \pi(2-2 h(r)-c(r))-\int_{\Omega(r)} K+\sum_{\theta_{i}<0}\left(2 \tan \left(\theta_{i} / 2\right)-\theta_{i}\right)
$$

where $h(r)$ is the number of handles in $\Omega(r), c(r)$ is the number of connected components of $\Gamma(r)$, and $K(x)$ is the curvature of M at x.

Proof. Let $\Gamma(r)$ consist of smooth curves $C_{i}(1 \leq i \leq n)$ with endpoints x_{i-1} and x_{i} (where $x_{0}=x_{n}$). Let C_{i}^{\prime} be the arc obtained by moving each point of C_{i} out perpendicularly from C_{i} through a distance ε. Then $\Gamma(r+\varepsilon)$ coincides with $\bigcup C_{i}^{\prime}$ except near the vertices. At each vertex x_{i} with a positive exterior angle $\theta_{i}, \Gamma(r+\varepsilon)$ has an extra circular arc of length (to first order) $\varepsilon \theta_{i}$. At each vertex x, with a negative exterior angle $\theta_{i}, \cup C_{i}^{\prime}$ has two extra little arcs that jut into $\Omega(r)$; to first order their length is $\left|2 \varepsilon \tan \left(\theta_{i} / 2\right)\right|$ (draw a diagram). Thus

$$
\begin{aligned}
L(r+\varepsilon) & =\sum\left|C_{i}^{\prime}\right|+\sum_{\theta_{i}>0} \varepsilon \theta_{i}+\sum_{\theta_{i}<0} 2 \varepsilon \tan \left(\theta_{i} / 2\right)+o(\varepsilon) \\
& =L(r)+\sum \varepsilon \int_{C_{i}} \kappa+\sum_{\theta_{i}>0} \varepsilon \theta_{i}+\sum_{\theta_{i}<0} 2 \varepsilon \tan \left(\theta_{i} / 2\right)+o(\varepsilon)
\end{aligned}
$$

Received October 4, 1987.

