POON'S SELF-DUAL METRICS AND KÄHLER GEOMETRY

CLAUDE LEBRUN

Abstract

It is shown that the self-dual conformal metrics on connected sums of \mathbf{CP}_2 's recently produced by Y. S. Poon arise from zero scalar curvature Kähler metrics on blow-ups of \mathbf{C}^2 by adding a point at infinity and reversing the orientation.

As noted by many authors ([4], [5], [6]), a complex surface with Kähler metric has anti-self-dual Weyl curvature iff the scalar curvature vanishes. On what would initially appear to be a completely unrelated front, Poon ([8], [9]) has produced positive scalar curvature self-dual metrics on connected sums of two and three complex projective planes. In fact, however, these phenomena are closely related:

Theorem. Let $M = m\mathbf{CP}_2$, $0 \le m \le 3$, be equipped with a self-dual metric g of positive scalar curvature. There exists at least one point $p \in M$ such that $(M - \{p\}, g)$ is conformally isometric to \mathbf{C}^2 with m points blown up equipped with an asymptotically flat Kähler metric of zero scalar curvature.

(**Remark.** The conformal isometry, of course, reverses orientation.)

Proof. Let $\pi: \mathbb{Z} \to M$ be the canonical projection from the twistor space \mathbb{Z} onto M; recall [1] that \mathbb{Z} consists of all orthogonal almost-complex structure tensors on M inducing the reverse orientation. There exists ([8], [9]) a complex surface $\Sigma \subset \mathbb{Z}$ isomorphic to \mathbb{CP}_2 blown up at m points such that $\pi|_{\Sigma}: \Sigma \to M$ is a diffeomorphism away from a projective line $L \subset \Sigma$ sent to a point $p \in M$; e.g. when m = 0, $M = S^4$, $\mathbb{Z} = \mathbb{CP}_3$, and Σ is a hyperplane. By construction, $(\pi|_{\Sigma})^*g$ is a Hermitian metric on $\Sigma - L$ but degenerates at L. Identifying $\Sigma - L$ with \mathbb{C}^2 blow up at m points, let

$$\hat{g} = (1 + r^2)^2 (\pi |_{\Sigma})^* g,$$

where r is the Euclidean distance from the origin in \mathbb{C}^2 ; this is not only Hermitian, but asymptotically flat, differing from the standard metric only by terms of order $1/r^2$ because the projection $\Sigma \to M$ is standard on the

Received February 10, 1987 and, in revised form, July 20, 1987.