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DEFINITE 4-MANIFOLDS

RONALD FINTUSHEL k RONALD J. STERN

1. Introduction

The paucity of positive definite unimodular integral bilinear forms which
are realized as the intersection form of a closed smooth 4-manifold is demon-
strated by the following recent theorem of S. Donaldson:

Theorem {Donaldson [4]). Let X be a smooth closed oriented 4-manifold
with positive definite intersection form θ. Then θ is "standard'; i.e. over the
integers θ^ ( l)Θ Θ(l).

This theorem was originally proved under the assumption that X is simply
connected [2], and has also been extended by M. Furuta [7] to cover X with
Hχ(X Z) = 0 by techniques similar to those used in [4]. The proofs of all
these versions of the theorem rely on quite detailed ad hoc analysis and on
the deep and difficult work of C. Taubes [9] (cf. [8]).

We have long felt that it would be worthwhile to give a proof of Donald-
son's theorem which reduced the role played by analysis and thus be more
accesible to topologists. Our work in [5] was a start in that direction. The
purpose of this paper is to give a proof of Donaldson's theorem under the as-
sumption that Hi (X; Z) has no 2-torsion while using as analytical input only
the basic work of K. Uhlenbeck [10], [11]. Our proof is in spirit similar to that
of [5], using SO(3)-connections, but makes more apparent the importance of
the "basepoint fibration" (see §2). By combining our techniques with Donald-
son's study of orientations of moduli spaces one can presumably remove our
hypothesis on H\(X; Z) as in [4, 4(c)]; however we do not know an elementary
argument that will remove this hypothesis.

As in [5] we base our proof on a useful characterization of nonstandard
integral inner product spaces. Let W be a positive definite unimodular integral
inner product space and define an equivalence relation on W by declaring
that w\ ~ u>2 if w\ = W2 (mod 2) and w\ = w\. Note that — w ~ w. Set
μ(w) = τ}φ(w' G W\w' ~ w) and call an element e EW minimal if e2 < w2

for all w = e (mod 2).
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