TOTAL ABSOLUTE CURVATURE AND EMBEDDED MORSE NUMBERS

R. W. SHARPE

Abstract

In this paper we use techniques of Morse theory to compute, under mild hypotheses, the infimum of the total absolute curvatures $\inf \tau(M^m \subset \mathbf{R}^w)$ for the smooth embeddings $M^m \subset \mathbf{R}^w$ in a given isotopy class.

1. Introduction

In 1929, W. Fenchel [8] showed that a circle immersed in \mathbb{R}^3 has (normalized) total absolute curvature (cf. §2 for the definition) at least 2 with equality only for the boundary of a convex planar disc. This was followed in 1949 by work of Fary [7] and Milnor [19] who showed that a knot in \mathbb{R}^3 has total absolute curvature more than 4. Since that time there has been considerable effort to obtain lower bounds for the total absolute curvature τ of a closed manifold immersed or embedded in Euclidean space in terms of the topological invariants of the situation and to study the consequences of small curvature (cf. e.g. Borsuk [1], Chern & Lashof [3], [4], Ferus [9], Fox [10], Kuiper & Meeks [15], Langevin & Rosenberg [17], Meeks [18], Pinkall [28], Sunday [32], and Wintgen [37]).

Recall that a Morse function on a smooth compact manifold M is a smooth real valued function on M whose critical points are all nondegenerate. The Morse number $\mu(M)$ is the minimum of the number of critical points of the Morse functions on M. For $m \neq 3$, 4 or 5 this is the same as the number of cells in the smallest CW complex with the simple homotopy type of M (cf. Appendix 2.7). In 1958 Chern and Lashof [4] proved that for an immersion $\tau(i) \geq \mu(M)$, and raised the problem of determining the infimum of $\tau(i)$ as i varies over some class of maps, such as all immersions, a regular homotopy class of immersions, all embeddings, or an isotopy class of embeddings. In particular they formulated:

Received May 19, 1986 and, in revised form, January 27, 1987. This research was supported in part by National Science and Engineering Research Council of Canada grant A8421.