THE ORIENTATION OF YANG-MILLS MODULI SPACES AND 4-MANIFOLD TOPOLOGY

S. K. DONALDSON

1. Introduction

This paper has two separate purposes. The first is to modify the proofs of [3] and [6] (which considered simply connected manifolds) to obtain results on the intersection forms of 4-manifolds in the presence of fundamental groups. As an extension of the theorem of [3] we shall prove:

Theorem 1. If X is a closed, oriented smooth 4-manifold whose intersection form

$$Q: H^2(X; \mathbb{Z})/\text{Torsion} \to \mathbb{Z}$$

is negative definite, then the form is equivalent over the integers to the standard form $(-1) \oplus (-1) \oplus \cdots \oplus (-1)$.

In short, the result of [3] (Theorem A in [6]) extends without change to manifolds with arbitrary fundamental groups. For indefinite forms we shall prove:

Theorem 2. Let X be a closed, oriented smooth 4-manifold with the following three properties:

(i) $H_1(X; \mathbb{Z})$ has no 2-torsion.

(ii) The intersection form Q on $H^2(X)/Torsion$ has a positive part of rank 1 or 2.

(iii) The intersection form is even.

Then Q is equivalent over the integers to one of the forms

(0	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$,	(0	1)	$\oplus \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$	1)
1	0)'	$\backslash 1$	0)	$\mathbb{U}(1$	0).

In short, Theorems B and C of [6] extend to manifolds with no 2-torsion in their first homology group.

Received March 26, 1986 and, in revised form, October 13, 1986.