CONSTRUCTION OF SINGULAR HOLOMORPHIC VECTOR FIELDS AND FOLIATIONS IN DIMENSION TWO

ALCIDES LINS NETO

0. Introduction

In this paper we construct holomorphic differential equations or foliations in two different situations:

- Case 1. Singularities of vector fields (local case).
- Case 2. Ricatti foliations in $\overline{\mathbf{C}} \times \overline{\mathbf{C}}$ (global case).

In Case 1 we consider singular vector fields defined in a neighborhood U of $0 \in \mathbb{C}^2$. Suppose that 0 is an isolated singularity of X. In this case, as is well known, the singularity can be solved by a finite number of blowing-ups (cf. [4], [5], and [12]). Let us consider for simplicity the case where X is solved by one blowing-up. After blowing-up $0 \in \mathbb{C}^2$, we obtain a complex line bundle $\tilde{\mathbb{C}}^2 \to \overline{\mathbb{C}}$, $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, a proper projection $\pi: \tilde{\mathbb{C}}^2 \to \mathbb{C}^2$, and a singular holomorphic foliation \mathscr{F} on $\tilde{U} = \pi^{-1}(U)$, where:

- (i) $\pi^{-1}(0) = \overline{\mathbf{C}}$, the zero section of $\tilde{\mathbf{C}}^2$, and π : $\tilde{\mathbf{C}}^2 \overline{\mathbf{C}} \to \mathbf{C}^2 \{0\}$ is a diffeomorphism.
- (ii) π sends nonsingular leaves of \mathscr{F} in $\tilde{U} \overline{C}$ onto integral curves of the complex differential equation $\dot{x} = X(x)$. The singularities of \mathscr{F} are in \overline{C} and are all simple (cf. §1.1 for the definition). Set $S = \sec$ of singularities of \mathscr{F} .

In some cases (nondicritical cases) $\overline{\mathbf{C}}$ is invariant by \mathscr{F} , that is, $\overline{\mathbf{C}}$ is the union of S and a leaf of \mathscr{F} , $\overline{\mathbf{C}} - S$. Therefore it is possible to consider the holonomy group of the leaf $\overline{\mathbf{C}} - S$ (in some transversal section). This group is called the projective holonomy of the singularity and we denote it by $\mathscr{H}(\mathscr{F})$. In §2 of this paper we prove a slightly more general version of the following result.

Theorem 1. Let $G = \{g_1, \dots, g_k\}$ be a set of germs at $0 \in \mathbb{C}$ of holomorphic diffeomorphisms which leave 0 fixed and such that g_1, \dots, g_k and $g_1 \circ \dots \circ g_k$ are linearizable, not necessarily in the same coordinate system. Then