GAUGE THEORY ON ASYMPTOTICALLY PERIODIC 4-MANIFOLDS

CLIFFORD HENRY TAUBES

1. Introduction

S. K. Donaldson's theorem on the nonexistence of certain closed, smooth 4-manifolds [8] (and see [12]) has the surprising corollary that there exists an exotic smooth structure on \mathbf{R}^{4}. This corollary was deduced by M. Freedman using his machine [13] for analyzing topological 4-manifolds. The existence proof for this exotic structure is presented in [15], [12].

Subsequently, R. Gompf proved [15] that $\mathscr{R}=\{$ oriented diffeomorphism classes of smooth manifolds which are homeomorphic to $\left.\mathbf{R}^{4}\right\}$ has at least four elements. Freedman and L. Taylor [14] have produced a fifth element, and, recently, Gompf has shown that \mathscr{R} contains a countable, doubly indexed family $\left\{\mathbf{R}_{m, n}\right\}_{m, n=0}^{\infty}$ of "exotic" \mathbf{R}^{4} 's [16], where, $\mathbf{R}_{0,0}$ is \mathbf{R}^{4} with its standard smooth structure.

The primary purpose of this paper is to prove the following theorem.
Theorem 1.1. There exists an uncountable family of diffeomorphism classes of oriented 4-manifolds which are homeomorphic to \mathbf{R}^{4}.

The proof of the preceding theorem is a two part argument; the first part is basically topological in content, and the second part is basically analytical. The topological aspects of the proof were provided to the author by R. Gompf (see [16]).

Gompf relayed to the author (after an observation of \mathbf{R}. Kirby) that Freedman's original existence proof realized an exotic $\mathbf{R}^{4}, \mathbf{R}$, as follows. In [13], Freedman constructs a closed, oriented topological 4-manifold, $\left|E_{8} \oplus E_{8}\right|$, which is simply connected; and whose homology intersection form is the definite, nondiagonalizable (over \mathbf{Z}) unimodular symmetric form $E_{8} \oplus E_{8}$. Donaldson [8] asserts that $\left|E_{8} \oplus E_{8}\right|$ is not smoothable, but Freedman's surgery techniques show that $V \equiv\left|E_{8}+E_{8}\right| \backslash$ pt. is smoothable. Now, according to Freedman there exists $\mathbf{R} \subset \mathscr{R}$, compact sets $K \subset V$ and $K_{1} \subset \mathbf{R}$, and a

[^0]
[^0]: Received June 17, 1986. The author's research was supported in part by a National Science Foundation Postdoctoral Fellowship in Mathematics.

