SINGULARITIES OF A SIMPLE ELLIPTIC OPERATOR

H. P. MCKEAN

1. Introduction

Consider the operator $A: f \rightarrow-\Delta f+\Lambda(f)$ acting upon real functions of $x \in D$ with $f(x)=0$ for $x \in \partial D . D \subset R^{d}$ is a d-dimensional domain. Λ : $R \rightarrow R$ is a convex function in the strict sense: $\Lambda^{\prime \prime}(f)>0$. Let $0<\lambda_{1}(D)<$ $\lambda_{2}(D) \leqslant \lambda_{3}(D) \leqslant$ etc. $\uparrow \infty$ be the spectrum of $-\Delta \mid D$. Ambrosetti-Prodi [1] and Berger-Church [2] proved that if

$$
-\infty<\Lambda^{\prime}(-\infty)<\lambda_{1}(D)<\Lambda^{\prime}(+\infty)<\lambda_{2}(D)
$$

then A is a global fold, i.e., up to diffeomorphisms front and back, it has the form ${ }^{1}$

$$
\left(f_{1}, f_{2}, f_{3}, \cdots\right) \rightarrow\left(f_{1}^{2}, f_{2}, f_{3}, \cdots\right)
$$

This attractive result prompted McKean-Scovel [4] to study the simplest example in which $\Lambda^{\prime}(R)$ crosses the whole spectrum of $-\Delta \mid D$: to wit, $d=1$ and $D=(0,1)$ with $\Lambda(f)=f^{2} / 2$, in which case A is the simple operator

$$
B: f \rightarrow-f^{\prime \prime}+f^{2} / 2 \text { subject to } f(0)=f(1)=0
$$

The present paper completes the description of the singularities of B.
Singular locus. This is the locus where the differential $d B=-d^{2} / d x^{2}+f$ $\equiv F$ is not $1: 1$; it consists of a countable number of sheets $M_{n}(n \geqslant 1)$ indicated in Figure 1, marked off in function space by the vanishing of one of the (necessarily simple) eigenvalues

$$
-\infty<\lambda_{1}(f)<\lambda_{2}(f)<\text { etc. } \rightarrow \infty
$$

of F; in other words, $f \in M_{n}$ if and only if $F e=0$ has a solution $e=e_{n}$ with $e(0)=e(1)=0$ and $n-1$ more interior roots $e(r)=0(0<r<1) . M_{n}$ is a smooth connected surface of codimension 1 with normal vector $\nabla \lambda_{n}=e_{n}^{2}$, the

