SINGULARITIES OF A SIMPLE ELLIPTIC OPERATOR

H. P. MCKEAN

1. Introduction

Consider the operator A: $f \to -\Delta f + \Lambda(f)$ acting upon real functions of $x \in D$ with f(x) = 0 for $x \in \partial D$. $D \subset \mathbb{R}^d$ is a d-dimensional domain. Λ : $\mathbb{R} \to \mathbb{R}$ is a convex function in the strict sense: $\Lambda''(f) > 0$. Let $0 < \lambda_1(D) < \lambda_2(D) \leq \lambda_3(D) \leq \text{etc.} \uparrow \infty$ be the spectrum of $-\Delta \mid D$. Ambrosetti-Prodi [1] and Berger-Church [2] proved that if

$$-\infty < \Lambda'(-\infty) < \lambda_1(D) < \Lambda'(+\infty) < \lambda_2(D),$$

then A is a global fold, i.e., up to diffeomorphisms front and back, it has the form¹

$$(f_1, f_2, f_3, \cdots) \rightarrow (f_1^2, f_2, f_3, \cdots).$$

This attractive result prompted McKean-Scovel [4] to study the simplest example in which $\Lambda'(R)$ crosses the whole spectrum of $-\Delta | D$: to wit, d = 1 and D = (0, 1) with $\Lambda(f) = f^2/2$, in which case A is the simple operator

B: $f \to -f'' + f^2/2$ subject to f(0) = f(1) = 0.

The present paper completes the description of the singularities of B.

Singular locus. This is the locus where the differential $dB = -d^2/dx^2 + f \equiv F$ is not 1:1; it consists of a countable number of sheets M_n $(n \ge 1)$ indicated in Figure 1, marked off in function space by the vanishing of one of the (necessarily simple) eigenvalues

$$-\infty < \lambda_1(f) < \lambda_2(f) < \text{etc.} \rightarrow \infty$$

of F; in other words, $f \in M_n$ if and only if Fe = 0 has a solution $e = e_n$ with e(0) = e(1) = 0 and n - 1 more interior roots e(r) = 0 (0 < r < 1). M_n is a smooth connected surface of codimension 1 with normal vector $\nabla \lambda_n = e_n^2$, the

Received May 19, 1986.

 $^{{}^{1}}f \rightarrow (f_{1}, f_{2}, f_{3}, \cdots)$ is an assignment of coordinates in function-space.