HARMONIC MAPS OF THE TWO-SPHERE INTO THE COMPLEX HYPERQUADRIC

JON G. WOLFSON

Introduction

Let $G(k, n; \mathbb{C})$ denote the Grassmann manifold of all k-dimensional subspaces \mathbb{C}^k of complex n-space \mathbb{C}^n . Let P_{n-1} denote complex projective (n-1)space, $P_{n-1} = G(1, n; \mathbb{C})$ and let $Q_{n-2} \subset P_{n-1}$ denote the complex hyperquadric, that is, the complex hypersurface, of P_{n-1} defined by the equation

$$Z_0^2 + Z_1^2 + \cdots + Z_{n-1}^2 = 0,$$

where $\{Z_0, \dots, Z_{n-1}\}$ are homogeneous coordinates of P_{n-1} . Q_{n-2} has a natural Kähler metric which it inherits as a complex submanifold of P_{n-1} . In this note we will study the minimal immersions or harmonic maps of the two-sphere S^2 into Q_{n-2} . Our result can be described as follows: To each harmonic map $f: S^2 \to Q_{n-2}$ we associate a directrix curve Δ_f : $S^2 \rightarrow G(2, n; \mathbb{C})$ which is either a holomorphic curve or a degenerate harmonic map. (The degenerate harmonic maps arise in the study of harmonic maps $S^2 \rightarrow G(2, n; \mathbb{C})$. In [4] it is shown that they can be constructed from holomorphic curves $S^2 \to P_{n-1}$.) The directrix curve Δ_f will be shown to satisfy strong nullity conditions, in the sense that its 1th osculating space is null for $0 \le l \le r$ (where $r \ge 0$ depends on f). The harmonic map f can be recovered from its directrix curve Δ_f via differentiation and the choice of holomorphic sections of P_1 bundles over S^2 . This description and Calabi's description of minimal maps $S^2 \rightarrow S^N$ [1] are related. In fact, the nullity conditions on the directrix curves of harmonic maps $S^2 \rightarrow Q_{n-2}$ are similar to those on the directrix curves of minimal maps $S^2 \rightarrow S^N$.

Received July 27, 1985 and, in revised form, January 4, 1986. The author was partially supported by National Science Foundation Grant DMS 84-05168.