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RADON TRANSFORMS
ON HIGHER RANK GRASSMANNIANS
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Abstract

We define a Radon transform R from functions Gr(&, A?), the Grassmannian
of projective A:-planes in CP" to functions on Gr(/, n). If / e C°°(Gr(A:, n))
and L e Gr(/,n), then Rf(L) is the integral of /(//) over all Λ>planes Ή
which lie in L. If R' is the dual transform, we show under suitable
assumptions on k and / that R'R is invertible by a polynomial in the
Casimir operators of U(n 4- 1), the group of isometries CP". We also treat
the real and quaternionic cases. Finally, we indicate some possible variations
and generalizations to flag manifolds.

0. Introduction

Let P" be a projective space over a real division ring, say CP". The
projective hyperplane transform, or Radon transform R, associates to a suitable

'function / on the projective space Pn a function Rf on P"*, the space of
projective hyperplanes in Pn, by integration: if H is a hyperplane in P n , then

Rf(H)=f fdμ9

where dμ is normalized invariant measure. These transforms were first con-
sidered by S. Helgason. In [6] Helgason gave inversion formulas for R defined
over real, complex, quaternionic, or octonionic projective spaces. A natural
generalization of R is the fc-plane transform Rk. This associates to / a
function Rkf on Gr(fc, n\ the Grassmann manifold of projective /c-planes in
Pn, again by integration. Helgason also gave inversion formulas for Rk defined
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