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REGULARITY THEOREM FOR HARMONIC
MAPS WITH SMALL ENERGY
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1. Introduction

This paper studies the regularity problem of harmonic maps in higher
dimensions. We consider maps from the unit ball B in R" (n > 2) equipped
with a metric g into a compact submanifold Nm of R .̂ We say that u e
L\{B, N) if u e L\{B,Rk) and u(x) e iV a.e x e 5. The energy £(«) of w is
defined as £(w) = /β|Vw|2ίfo. A weakly harmonic map is defined to be the
weak solution to the formal Euler-Lagrange equations, which form a nonlinear
elliptic system. The equations are

where AU(X, Y) e (TUN) -1 is the second fundamental form of N given by
AU(X,Y) = (DXY)±. X,Y are vector fields on iV in a neighborhood of
MGiV.

It is easy to see that u is harmonic if and only if (d/dt)E(ut)\ΐ=0 = 0,
where ut is a 1-parameter family of maps defined by ut(x) = Π(w(x) + ίτj(x))
VTJ e Co°°(5, RΛ). Π is the nearest point projection of R* into N.

There is another type of variation that one may consider. One takes
ut = u o φt for φt a 1-parameter family of compactly supported C1 diffeomor-
phisms of B with φ0 = Id. E(ut) is differentiable in /. If u is always critical
for this type of variations and if u is harmonic, then u is called a stationary
map.

So far not much is known about the regularity of weak harmonic maps. For
n = 2 it is proved in [6] that a harmonic map with finite energy does not have
isolated singularity. A theorem of [7] says that u has no interior singularity if u
is stationary and n = 2.
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