POINTS FIXES D'UNE APPLICATION SYMPLECTIQUE HOMOLOGUE A L'IDENTITE

JEAN-CLAUDE SIKORAV

0. Introduction-énoncé du résultat et de la démonstration

Dans ce travail, toutes les variétés (de dimension finie ou non) et les applications seront de classe C^{∞} . On considère une variété symplectique fermée (M, σ) munie d'un automorphisme φ . Suivant V. I. Arnold [2, p. 427], on dit que φ est homologue à l'identité s'il s'obtient en intégrant un champ de vecteurs hamiltonien dépendant du temps. De façon explicite, il existe h_t : $M \to \mathbb{R}, \ 0 \le t \le 1$, chemin lisse dans $C^{\infty}(M, \mathbb{R})$, tel que, si l'on définit $\varphi_t \in \mathrm{Diff}\,M$ par:

$$\varphi_0 = \mathrm{id}, \qquad \dot{\varphi}_t = X_{h_t} \circ \varphi_t,$$

où X_h est le gradient symplectique de $h \in C^{\infty}(M, \mathbb{R})$, on ait $\varphi_1 = \varphi$. Arnold (ibid.) remarque que si φ est C^1 -proche de id, alors il admet une "fonction génératrice" $S: M \to \mathbb{R}$ telle qu'en particulier les points fixes de φ soient les points critiques de S. Donc, φ a au moins autant de points fixes qu'une fonction sur M a de points critiques. On peut se demander si c'est encore vrai sans l'hypothèse de C^1 -proximité: c'est ce que conjecture Arnold dans [1] et [3].

Une percée décisive sur cette question est intervenue en 1982-83: C. C. Conley et E. Zehnder [9] prouvent que tout automorphisme de $(T^{2n}$, standard), homologue à l'identité, a au moins 2n + 1 points fixes, ce qui prouve dans ce cas la conjecture d'Arnold. Leur méthode a été ensuite utilisée par A. Weinstein [23] pour le cas où φ est C^0 -proche de id, par B. Fortune et A. Weinstein [12] pour $(M, \sigma) = (\mathbb{CP}^n$, standard), et par M. Chaperon [8] pour minorer le nombre de points d'intersection avec la section nulle de certains plongements lagrangiens $V \to T^*V$, V étant une variété riemannienne plate.