AN INFINITE SET OF EXOTIC R⁴'S

ROBERT E. GOMPF

Introduction

In 1982, Michael Freedman startled the topological community by pointing out the existence of an "exotic \mathbb{R}^4 ", a smooth manifold homeomorphic to \mathbb{R}^4 , but not diffeomorphic to it. This result follows easily from Donaldson's Theorem [2] on the nonexistence of certain smooth 4-manifolds, together with Freedman's powerful techniques [3] for analyzing 4-manifolds in the topological category. This exotic \mathbb{R}^4 was shocking to topologists, because in dimensions $n \neq 4$, it is a fundamental result of smoothing theory that there are no exotic \mathbb{R}^n 's. (Since \mathbb{R}^n is contractible, there is no place for any bundle-theoretic obstruction to live.) Thus, this exotic \mathbb{R}^4 implies a catastrophic failure in dimension 4 of the basic philosophy of smoothing theory, as well as other high-dimensional techniques.

Freedman's discovery naturally raised questions about the set \mathscr{R} of all oriented diffeomorphism types homeomorphic to \mathbb{R}^4 . The most basic problem has been to determine the cardinality of \mathscr{R} . Soon after Freedman's result, the author showed [5] that \mathscr{R} has at least four elements. More recently, Freedman and Taylor [4] have found a fifth element, a "universal" \mathbb{R}^4 in which all others must embed. In the present paper, we exploit a technique of Freedman and Taylor to prove that \mathscr{R} is (at least countably) infinite.

Our main result, Theorem 2.3, asserts the existence of a doubly indexed family $\{R_{m,n}|m, n = 0, 1, 2, \dots, \infty\}$ in \mathcal{R} such that $R_{m,n}$ has an orientation-preserving embedding in $R_{m',n'}$ if and only if $m \leq m'$ and $n \leq n'$. In particular no two members of this family are related by an orientation-preserving diffeomorphism. We actually show that when m > m' or n > n' there is a compact subset of $R_{m,n}$ which cannot embed in $R_{m',n'}$.

We use these compact subsets to prove the required nonembedding property which distinguishes the $R_{m,n}$'s. Our key Lemma 1.2 gives a method for finding such compact sets which do not embed in a preassigned $R \in \mathcal{R}$. This is where

Received May 1, 1985. Supported by a National Science Foundation postdoctoral fellowship.