AN INFINITE SET OF EXOTIC $\mathbf{R}^{\mathbf{4}}$ 'S

ROBERT E. GOMPF

Introduction

In 1982, Michael Freedman startled the topological community by pointing out the existence of an "exotic \mathbf{R}^{4} ", a smooth manifold homeomorphic to \mathbf{R}^{4}, but not diffeomorphic to it. This result follows easily from Donaldson's Theorem [2] on the nonexistence of certain smooth 4-manifolds, together with Freedman's powerful techniques [3] for analyzing 4-manifolds in the topological category. This exotic \mathbf{R}^{4} was shocking to topologists, because in dimensions $n \neq 4$, it is a fundamental result of smoothing theory that there are no exotic \mathbf{R}^{n} 's. (Since \mathbf{R}^{n} is contractible, there is no place for any bundle-theoretic obstruction to live.) Thus, this exotic \mathbf{R}^{4} implies a catastrophic failure in dimension 4 of the basic philosophy of smoothing theory, as well as other high-dimensional techniques.

Freedman's discovery naturally raised questions about the set \mathscr{R} of all oriented diffeomorphism types homeomorphic to \mathbf{R}^{4}. The most basic problem has been to determine the cardinality of \mathscr{R}. Soon after Freedman's result, the author showed [5] that \mathscr{R} has at least four elements. More recently, Freedman and Taylor [4] have found a fifth element, a " universal" \mathbf{R}^{4} in which all others must embed. In the present paper, we exploit a technique of Freedman and Taylor to prove that \mathscr{R} is (at least countably) infinite.

Our main result, Theorem 2.3, asserts the existence of a doubly indexed family $\left\{R_{m, n} \mid m, n=0,1,2, \cdots, \infty\right\}$ in \mathscr{R} such that $R_{m, n}$ has an orientationpreserving embedding in $R_{m^{\prime}, n^{\prime}}$ if and only if $m \leqslant m^{\prime}$ and $n \leqslant n^{\prime}$. In particular no two members of this family are related by an orientation-preserving diffeomorphism. We actually show that when $m>m^{\prime}$ or $n>n^{\prime}$ there is a compact subset of $R_{m, n}$ which cannot embed in $R_{m^{\prime}, n^{\prime}}$.

We use these compact subsets to prove the required nonembedding property which distinguishes the $R_{m, n}$'s. Our key Lemma 1.2 gives a method for finding such compact sets which do not embed in a preassigned $R \in \mathscr{R}$. This is where

