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1. Introduction

A space-form is a complete pseudo-Riemannian manifold of dimension > 2
with constant curvature. A Lorentz space-form is a space-form with a Lorentz
metric of signature +—— ---. In this paper we study 3-dimensional Lorentz
space-forms of constant curvature 1, and unless there is a possibility of
confusion, these will be often referred to simply as space-forms. The standard
linear model for this geometry (the “3-dimensional anti-de Sitter space”) is

S12 = {(x, y)|x,y € R x]2 = |y|* = 1} = 0(2,2)/0(1,2),

cf. [38, p. 334]. This set-up differs markedly from the usual Riemannian set-ups
in two respects: (1) the isotropy subgroup O(1,2) is noncompact, so O(2,2)
does not act properly on S'2. This feature substantially restricts the discrete
subgroups of O(2,2) which can act properly discontinuously on S (2) On
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