3-DIMENSIONAL LORENTZ SPACE-FORMS AND SEIFERT FIBER SPACES

RAVI S. KULKARNI & FRANK RAYMOND

Table of Contents

§ 1.	Introduction	231
§ 2.	Special features of the 3-dimensional Lorentz geometry of constant curvature 1	235
§3.	Subgroups of $PSL_2(\mathbf{R})$ and $\widetilde{PSL_2(\mathbf{R})}$	239
§4.	Subgroups of $I_0(S_{\infty})$, the level of a subgroup	243
§5.	Properly discontinuous subgroups of $I_0(S_1)$	245
§ 6.	Space-forms with solvable fundamental groups	247
§ 7.	Finiteness of Level	248
§ 8.	Standard Lorentz orbifolds and Seifert orbifolds	252
§9.	Topology of standard orbifolds	258
§ 10.	Homogeneous space-forms	264
§ 11.	A strange space-form	265
	References	267

1. Introduction

A space-form is a complete pseudo-Riemannian manifold of dimension ≥ 2 with constant curvature. A Lorentz space-form is a space-form with a Lorentz metric of signature $+--\cdots$. In this paper we study 3-dimensional Lorentz space-forms of constant curvature 1, and unless there is a possibility of confusion, these will be often referred to simply as space-forms. The standard linear model for this geometry (the "3-dimensional anti-de Sitter space") is

$$S^{1,2} = \{(x, y) | x, y \in \mathbf{R}^2, |x|^2 - |y|^2 = 1\} \approx O(2,2)/O(1,2),$$

cf. [38, p. 334]. This set-up differs markedly from the usual Riemannian set-ups in two respects: (1) the isotropy subgroup O(1, 2) is noncompact, so O(2, 2) does not act properly on $S^{1,2}$. This feature substantially restricts the discrete subgroups of O(2, 2) which can act properly discontinuously on $S^{1,2}$. (2) On

Received November 28, 1983 and, in revised form, January 10, 1985. The first author was partially supported by an NSF grant and a Guggenheim fellowship, and the second author by an NSF grant.