CHAINS IN CR GEOMETRY

HOWARD JACOBOWITZ

Abstract

There is a well-defined system of curves on any nondegenerate CR manifold of hypersurface type. It is shown that any two sufficiently close points on a strictly pseudo-convex abstract CR hypersurface can be connected by a smooth curve from this family. Such a general result does not hold for other signatures.

This paper shows that any two sufficiently close points on a strictly pseudo-convex CR hypersurface can be connected by a smooth chain. For purposes of exposition we first present the complete proof for a three-dimensional submanifold of \mathbf{C}^{2}. Then in $\S 4$ we indicate the changes necessary to cover the general case of an abstract CR structure of hypersurface type. We work with C^{∞} structures but it will be obvious that one only needs C^{k}, k large. The results are new even for real analytic structures and it is not clear if a shorter proof would be possible in this case.

A CR structure on a three-dimensional manifold M is a 2-plane distribution $H \subset T M$ together with a fibre preserving map $J: H \rightarrow H$ with $J^{2}=-I$. Given such a structure, we may choose a real 1-form ω which annihilates H and a complex 1-form ω_{1} which annihilates all vectors of the form $X+i J X$, $X \in H$. These choices can be done in such a way that $\omega \wedge \omega_{1} \wedge \bar{\omega}_{1}$ is different from zero in a neighborhood of a given point. We are interested in results of a local nature on M so we may shrink M and assume $\omega \wedge \omega_{1} \wedge \bar{\omega}_{1}$ is everywhere different from zero. Conversely, given ω and ω_{1} with $\omega \wedge \omega \wedge \bar{\omega}_{1} \neq 0$ we may easily construct H and J.

Any three-dimensional submanifold M of \mathbf{C}^{2} has an induced CR structure. Let $\tilde{J}: T \mathbf{C}^{2} \rightarrow T \mathbf{C}^{2}$ give the complex structure. Then $H=T M \cap \tilde{J} T M$ and $J=\left.\tilde{J}\right|_{H}$. Note that if $\Phi: U \rightarrow V$ is a biholomorphism of open sets in \mathbf{C}^{2}, then $M \cap U$ and $\Phi(M) \cap V$ have the same CR structure. The forms ω and ω_{1} can

[^0]
[^0]: Received August 15, 1984 and, in revised form, June 8, 1985. This work was supported in part by National Science Foundation Grant MCS-8201517 and The Institute for Advanced Study.

