PATH-CONNECTED YANG-MILLS MODULI SPACES

CLIFFORD HENRY TAUBES

Abstract

Min-max techniques in the calculus of variations are used to prove that the moduli spaces of self-dual connections on principal SU(2) or SU(3) bundles over S^4 are path-connected.

1. Introduction

On a principal bundle $P \to S^4$ whose structure group, G, is a compact, simple and simply connected Lie group, there are distinguished connections. These are the connections whose curvature is self-dual with respect to the Hodge dual of the metric on T^*S^4 which is induced from the identification $S^4 = \{x \in \mathbf{R}^5 : |x|^2 = 1\}$. (This metric is called the standard metric.)

The moduli space of self-dual connections on P,

 $\mathfrak{M}(P) = (P_s \times \{ \text{smooth, self-dual connections on } P \}) / \text{Aut } P,$

is a smooth manifold. Here P_s is the fibre of P at s = south pole, and Aut P is the group of smooth automorphisms of P. The isomorphism class of P is specified by its integer degree, k(P) [4]. (For G = SU(2), $k(P) = -c_2(P \times_{SU(2)} \mathbb{C}^2)$.) If k(P) < 0, then $\mathfrak{M}(P) = \emptyset$; if k(P) = 0, then $\mathfrak{M}(P) =$ point; and if k(P) > 0, then $\mathfrak{M}(P)$ is nontrivial.

Although these spaces have been the subject of much recent study, [4], [11], [14], relatively little is known of their global structure. A small advance is made in this article with the following theorem.

Theorem 1.1. Let $P \to S^4$ be a principal G = SU(2) or SU(3) bundle with positive degree. Then $\mathfrak{M}(P)$ is path-connected.

Received October 12, 1983 and, in revised form, January 30, 1984. This work was completed while the author was a Harvard University Junior Fellow and was supported in part by the National Science Foundation under grant #PHY-82-03669.