J. DIFFERENTIAL GEOMETRY 19 (1984) 299-323

FUNCTION THEORY, RANDOM PATHS AND COVERING SPACES

TERRY LYONS & DENNIS SULLIVAN

Table of Contents

0.	Introduction	299
1.	Background (potential theory and ergodic theory)	303
	Problems: Solvable groups and exponential growth groups	
	Nilpotent covers of compact manifolds (Theorem 1)	
4.	ω-nilpotent covers of recurrent manifolds (Theorem 2)	309
5.	A natural projection of bounded functions on to bounded harmonic	
	functions (Theorem 3)	310
6.	The Kelvin-Nevanlinna-Royden recurrence criterion (Theorems 4, 4')	312
7.	Discretization of the random motion in the *-recurrent case (Theorem 5)	315
8.	Discretization of the random motion in the cocompact case (Theorem 6)	318

0. Introduction

For connected Riemannian manifolds M we discuss the interplay between the harmonic function theory on M, the statistical properties of random paths on M and the global geometrical structure of M.

In particular, we study the case when M is a regular or Galois cover of a smaller Riemannian manifold N. That is, there is a discrete group Γ of isometries acting on M so that $N = M/\Gamma$. M will be called an Abelian (resp. nilpotent, solvable, etc.) cover of N when Γ is an Abelian (nilpotent, solvable, etc.) discrete group of isometries.

We first illustrate the general results by an example. Let M be any Abelian cover of any compact Riemann surface N (the metric chosen for N is of no significance). Let the genus of N exceed 1 and the rank of the Abelian group exceed 2. Then by Theorems 1 and 4 below one sees that:

(i) M does not possess any nonconstant positive harmonic functions, but

Received July 20, 1983.