A DEGENERATION OF THE MODULI SPACE OF STABLE BUNDLES

D. GIESEKER

1. Let k be an algebraically closed field and let d be an odd integer. Let $g \geqslant 2$ be an integer and suppose Y is a smooth projective curve of genus g. Let U_{Y} be the set of isomorphism classes of stable bundles E of rank two and degree d. (Note: we do not fix $\wedge^{2} E$.) Following Mumford and Seshadri, we know that U_{Y} is in a natural way the set of (closed) points of a smooth projective variety again denoted by U_{Y}. Our aim in this paper is to develop a method of studying the topology of U_{Y} by degeneration methods. Our main application is the proof of the following theorem conjectured by Newstead and Ramanan.

Theorem $1.1(k=\mathbf{C})$. The kth Chern class of the tangent bundle of U_{Y} is zero in the deRham cohomology of U_{Y} if $k>2 g-2$.

We hope that degeneration methods may be useful in other contexts. For instance, one can hope that the theory can be generalized to bundles of arbitrary degree and rank. One should also be able to compute the lower Chern classes of $\Omega_{U_{Y}}^{1}$.

The following is a brief outline of this paper: Let X_{0} be an irreducible curve of genus g which is smooth except of one ordinary node N. We let X be the normalization of X_{0} and let P_{1} and P_{2} be the inverse image of N. Our object is to find a (singular) projective variety $U_{X_{0}}$ which will play the role to U_{Y} when Y is smooth. In particular, if $\left\{Y_{t}\right\}$ is a family of smooth curves degenerating to X_{0}, then we desire that $U_{Y_{t}}$ generates to $U_{X_{0}}$.

The first difficulty in constructing $U_{X_{0}}$ is that one cannot hope that all the points of $U_{X_{0}}$ will correspond to actual bundles on X_{0}. There are two methods to resolve this difficulty. One is to consider certain torsion-free sheaves on X_{0} to obtain a candidate for $U_{X_{0}}$ [3]. However, such a $U_{X_{0}}$ does not appear to have (analytic) normal crossings. The second method, which we will follow, is to consider certain bundles on certain semistable models of X_{0} as is suggested by

[^0]
[^0]: Received January 10, 1983 and, in revised form, July 7, 1983. This work was partially supported by National Science Foundation Grant MCS77-18723 A04.

