OSCULATION BY ALGEBRAIC HYPERSURFACES

JAY A. WOOD

Introduction

In this paper we give necessary and sufficient conditions for d pieces of hypersurface to be osculated to a fixed order by an algebraic hypersurface of degree d.

Given a line L_0 in P^{n+1} and d points P_1^0, \dots, P_d^0 on L_0 , suppose there are d pieces of hypersurface $\gamma_1, \dots, \gamma_d$ such that $P_i^0 \in \gamma_i$ and L_0 intersects each γ_i transversely.

The question addressed here is: when does there exist an algebraic hypersurface γ of degree *d* which osculates each piece γ_i to order *r* at P_i^0 ? The main result gives necessary and sufficient conditions for the existence of such an algebraic hypersurface γ .

Fix affine coordinates (x_0, \dots, x_n) on P^{n+1} , and fix line coordinates $(m_1, \dots, m_n, b_1, \dots, b_n)$, where a line L is given by $x_k = m_k x_0 + b_k$, $k = 1, 2, \dots, n$. (Line coordinates are just local coordinates on Gr(1, n + 1), the Grassmannian of all lines in P^{n+1} .) Assume that coordinates have been chosen so that the given line L_0 has line coordinates $m_k = 0$, $b_k = 0$ for all k. L_0 is then the x_0 -axis. For convenience, write $m = (m_1, \dots, m_n)$, $b = (b_1, \dots, b_n)$. A line L = L(m, b) near L_0 will intersect each γ_i at a point $P_i = P_i(m, b)$. Then $P_i(0, 0) = P_i^0$. Let $X_i = X_i(m, b)$ be the 0th coordinate of P_i in terms of the affine coordinate system. Define $K_{ik} = K_{ik}(m, b)$ by

$$K_{jk}(m,b) = \frac{\partial^2 \left[\sum_i X_i(m,b) \right]}{\partial b_i \partial b_k}$$

 $j, k = 1, 2, \dots, n$. We can now state the main result.

Theorem. There exists an algebraic hypersurface γ of degree d, which osculates each γ_i to order $r, 2 \leq r \leq d$, at $P_i^0, i = 1, 2, \dots, d$, if and only if K_{jk} and all of its partial derivatives of order $\leq r - 2$ vanish at (m, b) = (0, 0).

Remarks. 1. If the order of osculation desired is r = 0 or r = 1, there is no condition. Just take γ to be the union of the *d* tangent hyperplanes to γ_i at P_i^0 .

Received April 25, 1983.