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Historical Introduction

The classical Poisson bracket operation defined on functions on R2" is

(*) {/,*}= Σ

In the early nineteenth century, Poisson noticed that the vanishing of {/, g}
and {/, h] imply that of {/, {g, A}}; almost thirty years later Jacobi dis-
covered the identity {/, {g, h}} = {{/, g}, h) + {g, {/, h}} which "explains"
Poisson's theorem. In his study of general composition laws satisfying the
Jacobi identity, Lie [29] defined in local coordinate form what is now known as
a Poisson structure. On Rr such a structure is given by functions w^x^- ,jcr)
satisfying the identities

w.. + Wβ = o,
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