J. DIFFERENTIAL GEOMETRY 18 (1983) 523-557

THE LOCAL STRUCTURE OF POISSON MANIFOLDS

ALAN WEINSTEIN

Table of Contents

Historical Introduction
Acknowledgments
1. Poisson Manifolds and Mappings
2. Splitting
3. Linear Poisson Structures
4. Linear Approximation
5. Hamiltonian Systems
6. The Linearization Problem
7. Function Groups, Realizations, and Momentum Mappings 540
8. Dual Pairs and Gauge Groups 542
9. Existence of Realizations
10. Uniqueness of Realizations 549
11. The Restricted Three Body Problems and Other Examples 550
References

Historical Introduction

The classical Poisson bracket operation defined on functions on \mathbf{R}^{2n} is

(*)
$$\{f, g\} = \sum_{i,j=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial q_i} \frac{\partial f}{\partial p_i} \right)$$

In the early nineteenth century, Poisson noticed that the vanishing of $\{f, g\}$ and $\{f, h\}$ imply that of $\{f, \{g, h\}\}$; almost thirty years later Jacobi discovered the identity $\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}$ which "explains" Poisson's theorem. In his study of general composition laws satisfying the Jacobi identity, Lie [29] defined in local coordinate form what is now known as a Poisson structure. On **R'** such a structure is given by functions $w_{ij}(x_1, \dots, x_r)$ satisfying the identities

$$w_{ij} + w_{ji} = 0,$$

$$\sum_{l=1}^{r} \left(w_{lj} \frac{\partial w_{ik}}{\partial x_{l}} + w_{li} \frac{\partial w_{kj}}{\partial x_{l}} + w_{lk} \frac{\partial w_{ji}}{\partial x_{l}} \right) = 0,$$

Received September 17, 1982. Research supported by the Miller Institute and National Science Foundation Grant MCS 80-23356.