STRUCTURE THEOREMS ON RIEMANNIAN
 SPACES SATISFYING $R(X, Y) \cdot R=0$. I. THE LOCAL VERSION

Z. I. SZABÓ

Introduction

The curvature tensor R of a locally symmetric Riemannian space satisfies $R(X, Y) \cdot R=0$ for all tangent vectors X and Y, where the linear endomorphism $R(X, Y)$ acts on R as a derivation. This identity holds in a space of recurrent curvature also.

The spaces with $R(X, Y) \cdot R=0$ have been investigated first by E. Cartan [2] as these spaces can be considered as a direct generalization of the notion of symmetric spaces. Further on remarkable results were obtained by the authors A. Lichnerowicz [13], R. S. Couty [3], [4] and N. S. Sinjukov [19], [20], [21]. In one of his papers K. Nomizu [15] conjectered that an irreducible, complete Riemannian space with $\operatorname{dim} \geqslant 3$ and with the above symmetric property of the curvature tensor is always a locally symmetric space. But this conjecture was refuted by H. Takagi [22] who constructed 3-dimensional complete irreducible nonlocally-symmetric hypersurfaces with $R(X, Y) \cdot R=0$. These two papers were very stimulating for the further investigations. We also have to mention the following authors in this field: S. Tanno [23], [24], [25], K. Sekigawa [16], [17] and P. I. Kovaljev [9], [10], [11].

In the following we call a space satisfying $R(X, Y) \cdot R=0$ a semi-symmetric space. The main purpose of this paper is to determine all semi-symmetric spaces in a structure theorem.

In §1 we give local decomposition theorems using the infinitesimal holonomy group, and in $\S 2$ we give some basic formulas. We would like to make it perfectly clear that the results of these chapters are concerning general Riemannian spaces, and not only semi-symmetric spaces. In §3 we construct several nonsymmetric semi-symmetric spaces and in $\S 4$ we show that every semi-symmetric space can be decomposed locally on an everywhere dense open subset into the direct product of locally symmetric spaces and of the spaces constructed in §3.

