CURVATURE OF AN ∞ -DIMENSIONAL MANIFOLD RELATED TO HILL'S EQUATION

H. P. MCKEAN

1. Introduction

Let C_{+}^{∞} be the space of positive infinitely differentiable functions e_0 of period 1 with $\int_0^1 e_0^2 = 1$, and let M be the class of real infinitely differentiable functions q of period 1 such that the corresponding Hill's operator $Q = -D^2 + q$ has ground state $\lambda_0 = 0$, where D signifies differentiation with regard to $0 \le x < 1$. The map $C_{+}^{\infty} \to M$ defined by $e_0''/e_0 = q$ is 1:1 and onto, the ground state of Q being necessarily simple; in particular, M comes in one simply-connected piece. The purpose of this note is to study the curvature of M considered as immersed in the space C_1^{∞} of all real infinitely differentiable functions of period 1; evidently, it is a surface of codimension 1 defined by the single relation $\lambda_0 = 0$, and since the gradient of the latter is $\nabla \lambda_0 = e_0^2 \neq 0$, Msits smoothly in C_1^{∞} .

The curvatures of 2-dimensional slices of M are found to be positive, the principal curvatures being proportional to the reciprocals of the excited periodic eigenvalues $0 < \overline{\lambda}_j$ ($j = 1, 2, 3, \cdots$) of the so-called allied operator \overline{Q} . The latter is the Hill's operator with ground state proportional to $e_0^{3/2}$ relative to the scale $d\overline{x} = (\int_0^1 e_0)^{-1} e_0 dx$. The maximal curvature of a 2-dimensional slice is

$$m = 4 \left(\int_0^1 e_0 \right)^4 \left(\int_0^1 e_0^4 \right)^{-1} \times (\lambda_1^- \lambda_2^-)^{-1},$$

while the total curvature is

$$k = 4 \left(\int_0^1 e_0 \right)^4 \left(\int_0^1 e_0^4 \right)^{-1} \times \sum_{1 \le i < j} \left(\lambda_i^- \lambda_j^- \right)^{-1}.$$

Received June 23, 1981. The support of the National Science Foundation under Grant NSF-MCS-76-0739 is gratefully acknowledged. Reproduction in whole or in part is permitted for any purpose of the U.S. Govt.