GENERALIZED ROTATIONAL HYPERSURFACES OF CONSTANT MEAN CURVATURE IN THE EUCLIDEAN SPACES. I

WU-YI HSIANG

Introduction

In 1841, Delaunay [3] discovered a beautiful way of constructing rotational hypersurfaces of constant mean curvature in the euclidean 3-space E^{3}, namely, its generating curve can be obtained as the trace of a focus by rolling a given conic section on the axis. The above theorem of Delaunay was generalized to higher dimensional euclidean spaces in [9], namely, the generating curves of those $O(n-1)$-invariant hypersurfaces of constant mean curvature in E^{n} can again be obtained by rolling construction. However, from the viewpoint of equivariant differential geometry, a natural generalization of the rotational surfaces of E^{3} should, at least, include those hypersurfaces which are invariant under an isometric transformation group (G, E^{n}) with codimension two principal orbit type. For example, in the case of E^{4}, there is the transformation group of type $O(2) \times O(2)$ acting on $E^{2} \times E^{2}=E^{4}$ besides the "usual" $O(3)$-action on E^{4}. Of course, in the final analysis, it will all depend on what kind of results such a generalization will lead to. As a preliminary indication, the study to generalized rotational hypersurfaces of $O(k) \times O(k)$-type already leads (here and the comparison paper [8]) to the discovery of a family of important new examples of constant mean curvature immersions of $(2 k-1)$ spheres into $E^{2 k}$. This result strongly suggests that the geometry of generalized rotational hypersurfaces definitely deserves a systematic investigation.

In this paper, we shall begin a systematic study of generalized rotational hypersurfaces of constant mean curvatures in E^{n}. The analytical problem of such a geometrical object can be reduced to the global solutions of certain specific ordinary differential equations. In §1, we shall recall some known results of $[6,10]$, which will enable us to write down the reduced, ordinary differential equation for each type of generalized rotational transformation groups. One may naturally divide such transformation groups (G, E^{n}) into five

