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0. Introduction

Let Mn be a complete Riemannian manifold. Then the Laplacian Δ = -δd
on functions is a nonpositive essentially self adjoint operator when restricted to
functions of compact support. Thus functions /(/^Δ~) can be defined by the
spectral theorem for unbounded self adjoint operators, according to the
prescription

(0.1) f(fK)=f"f{λ)dEλ,

where dEλ is the projection valued measure associated with /^Δ".
A natural problem is to study the behavior of the explicit kernel kf(X)(xx, x2)

representing /(/^Δ), in terms of the behavior of various geometric quantities
on Mn. As a particularly important example we have the heat kernel
E(xl9 x2, t) — ke-\2t. By use of the local parametrix and the standard elliptic
estimates, one can show that for / > 0, E(xλ9 JC2, 0 is a positive (symmetric)
C00 function of JC1? x2, t which for fixed t and (say) %2>

 ι s *n the domain of all
positive powers of Δ as a function of xλ; see e.g. [9]. In works of Garding [19]
and Donnelly [16], upper estimates for E(xu x2, t) (and its derivatives) were
given under the assumption that Mn has bounded geometry. They showed that
as x2 -> oo, the behavior of E{xλ, x2, t) is roughly similar to that of the

e-p2(xx,x2)/4

Euclidean heat kernel, — (p(xx, x2) denotes distance). Recall that
(4ττ/)w/

Mn is said to have bounded geometry if the injectivity radius i(x) of the
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