FOLIATED MANIFOLDS WITH FLAT BASIC CONNECTION

ROBERT A. BLÜMENTHAL

1. Introduction and statement of results

Let \mathfrak{F} be a smooth codimension-q foliation of a smooth manifold M. Let T(M) denote the tangent bundle of M, and let $E \subset T(M)$ be the subbundle consisting of the vectors tangent to the leaves of \mathfrak{F} . Let Q = T(M)/E be the normal bundle of \mathfrak{F} , and let F(Q) be its frame bundle, a principal GL(q, R) bundle. Recall that a connection on F(Q) is said to be basic if the parallel translation which it defines along paths lying in a leaf of \mathfrak{F} agrees with the "natural parallelism along the leaves" [3]. Equivalently, if $\pi: T(M) \to Q$ is the natural projection, and if $\Gamma(E)$, $\Gamma(Q)$, and $\mathfrak{K}(M)$ denote the space of smooth sections of the vector bundles E, Q, and T(M) respectively, then the associated Koszul operator $\nabla: \mathfrak{K}(M) \times \Gamma(Q) \to \Gamma(Q)$ satisfies the condition that $\nabla_X Y = \pi([X, \tilde{Y}])$ for all $X \in \Gamma(E)$ and all $Y \in \Gamma(Q)$, where \tilde{Y} is any vector field on M such that $\pi(\tilde{Y}) = Y$, and $[X, \tilde{Y}]$ denotes the usual Lie bracket of vector fields [2]. In the present work we study foliated manifolds supporting a flat basic connection, that is, a basic connection with vanishing curvature and torsion.

To begin, we have the following nonexistence result.

Theorem 1. If M is compact with finite fundamental group, then M does not support a foliation with flat basic connection.

As a corollary to the proof of Theorem 1, we will obtain

Corollary 1. Let (M, \mathcal{F}) be a foliated manifold with flat basic connection. If $H_1(M, Z) = 0$, then \mathcal{F} admits a transverse volume element; that is, \mathcal{F} is defined by a nowhere zero closed q-form on $M, q = \text{codim}(\mathcal{F})$.

It is well-known (see, e.g., [6]) that the universal cover of an *n*-dimensional manifold supporting a complete flat linear connection is R^n where the lifted connection corresponds to the canonical linear connection on R^n . We generalize this codimension-*n* result to foliations of arbitrary codimension.

Communicated by R. A. Bott, June 24, 1980.