FLOWS FOR DIFFERENTIABLE VECTOR FIELDS ON CONJUGATE BANACH SPACES ## RICHARD A. GRAFF ## Introduction In [6] the author showed that many of the manifolds of maps which are used in global nonlinear analysis and previously had been regarded solely as infinite-dimensional Banach manifolds do in fact possess the much richer structure of objects which the author called Bw^* manifolds. The author introduced an approach to a theory of differential calculus for maps between Bw^* spaces as a tool for the development of differentiable Bw^* manifold theory, and isolated two classes of differentiable maps which the author labeled C^k and \mathcal{Q}^k . These classes of maps were shown to be closed under composition, and the inverse function theorem was established for \mathcal{Q}^k maps. The main result of this paper is Theorem 6.3, which will complete the development of differential calculus for \mathfrak{A}^k maps by showing that \mathfrak{A}^k vector fields generate \mathfrak{A}^k flows. Since a Bw^* space can also be regarded as a Banach space, and since the \mathfrak{A}^k vector fields represent a subclass of the usual C^k vector fields under this identification, this existence theorem for flows generated by \mathfrak{A}^k vector fields is actually a strengthened version of the existence theorem for flows generated by C^k vector fields on Banach spaces. In fact, the ordinary existence theorem will be used in the proof of this new version in a manner reminiscent of the use of the ordinary inverse function in the proof of the inverse function theorem for \mathfrak{A}^k maps. Since a detailed account of the relevant basic theory of Bw^* spaces and differential calculus map be found in [6], the reader will be assumed to be acquainted with the material covered in that reference from the beginning of Chapter 2 through the first half of Chapter 6. However, for the sake of self-sufficiency, a brief review of essential information is included in §1. ## 1. Bw* Spaces and Differential Calculus Notation and terminology. Let X be a bw^* space. Then X' is a Banach space as is X'', and the natural linear injection of X into X'' is onto. Furthermore,