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1. Let G be a finitely generated group, and let G2 = (G, G) be the normal
subgroup of G generated by the commutators (a, b) = a~ιb~ιab; a, b G G.
Inductively we have the sequence of normal subgroups GΛ + 1 = (G, Gk),
k = 1, 2, . . . , Gx = G of G and the corresponding tower of nilpotent groups
G/Gi <~ ̂ 7^3 <—*••• We assume that none of the groups G/Gk has an
element of finite order. Then we talk about the group G without torsion.

A group § is said to be complete if for any positive integer n and any
element g G § the equation xn = g has at least one solution in §. For any
finitely generated nilpotent group N without torsion Malcev [4] constructed a
complete nilpotent group N without torsion, called the completion of N, and
an injection of N into N. Furthermore he constructed a Lie algebra LN over
the rationals and proved that there is a 1-1 correspondence between the
complete nilpotent groups without torsion and rational Lie algebras. Thus for
any finitely generated group G without torsion we have the tower of Malcev's
completions

and the tower of nilpotent rational Lie algebras

LG/G2+-LG/G3^ ,

given by Malcev's theory. We talk about the Lie algebra LG of the group G.
Each Lie algebra LG/ Gk can be given a structure of a group by the
Campbell-Hausdorf f formula

X oy = X +y +l[χ9y] + . . . .

This group is isomorphic with G/Gk.
On the other hand the rational homotopy type of the Eilenberg-McLane

space K(G, 1) is completely determined by a differential graded algebra
which is free with a decomposable differential and is constructed inductively
by the elementary extensions. Such algebras are said to be minimal by
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