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POSITIVE RICCI CURVATURE ON FIBRE
BUNDLES

JOHN CNASH

In this paper we construct complete metrics of positive Ricci curvature on a
large class of fibre bundles. Some of the results for compact fibres have been
obtained independently by Poor [12]. The base manifold M is assumed to be
compact admitting a metric with Ric^ > 0. If F = G/H is compact homoge-
neous with πλ(F) finite, we show that any bundle over M with fibre F admits
a metric with Ric > 0. Certain exotic 7- and 15-sρheres arise as sphere
bundles over spheres and, thus, admit metrics of positive Ricci curvature.

For vector bundles we have the following result.
Theorem. Let m\ B -> M be a vector bundle over M, a compact manifold

admitting a metric of positive Ricci curvature. If the fibre dimension is greater
than two, B admits a complete metric of positive Ricci curvature.

This result is related to a question of Cheeger and Gromoll [1]: Does any
vector bundle over Sn admit a complete metric with K > 0? Rigas has some
partial results on this problem [13].
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1. Preliminaries
We begin by recalling some basic notions and introducing notation. All

objects (manifolds, maps, actions, etc.) will be C0 0, and Mn denotes a
manifold of dimension n. The differential of a map /: M-±N between
manifolds will usually be abbreviated to fp{X) of just f(X) for X e TpM. For
a Riemannian manifold M we use the following curvature convention:

RM(X, Y)Z = [VX, VY]Z - Vιx,r]Z,

RM{X, Y, Z, W) = (RM{X, Y)Z, W),

RM{X, Y) = RU(X, Y, Y, X).

3E(Λ/) denotes the C 0 0 vector fields on M.
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