POSITIVE RICCI CURVATURE ON FIBRE BUNDLES

JOHN C. NASH

In this paper we construct complete metrics of positive Ricci curvature on a large class of fibre bundles. Some of the results for compact fibres have been obtained independently by Poor [12]. The base manifold M is assumed to be compact admitting a metric with $\operatorname{Ric}_M > 0$. If F = G/H is compact homogeneous with $\pi_1(F)$ finite, we show that any bundle over M with fibre F admits a metric with Ric > 0. Certain exotic 7- and 15-spheres arise as sphere bundles over spheres and, thus, admit metrics of positive Ricci curvature.

For vector bundles we have the following result.

Theorem. Let $\hat{\pi}$: $B \to M$ be a vector bundle over M, a compact manifold admitting a metric of positive Ricci curvature. If the fibre dimension is greater than two, B admits a complete metric of positive Ricci curvature.

This result is related to a question of Cheeger and Gromoll [1]: Does any vector bundle over S^n admit a complete metric with K > 0? Rigas has some partial results on this problem [13].

The author would like to express his thanks to Professors Shing-Tung Yau, Hans Samelson, and Robert Osserman for helpful conversations throughout the course of this work.

1. Preliminaries

We begin by recalling some basic notions and introducing notation. All objects (manifolds, maps, actions, etc.) will be C^{∞} , and M^n denotes a manifold of dimension n. The differential of a map $f: M \to N$ between manifolds will usually be abbreviated to $f_p(X)$ of just f(X) for $X \in T_pM$. For a Riemannian manifold M we use the following curvature convention:

$$R_{\mathcal{M}}(X, Y)Z = \left[\nabla_{X}, \nabla_{Y}\right]Z - \nabla_{[X,Y]}Z,$$
$$R_{\mathcal{M}}(X, Y, Z, W) = \langle R_{\mathcal{M}}(X, Y)Z, W \rangle,$$
$$R_{\mathcal{M}}(X, Y) = R_{\mathcal{M}}(X, Y, Y, X).$$

 $\mathfrak{X}(M)$ denotes the C^{∞} vector fields on M.

Communicated by I. M. Singer, April 4, 1977.