KAEHLERIAN MANIFOLDS WITH CONSTANT SCALAR CURVATURE ADMITTING A HOLOMORPHICALLY PROJECTIVE VECTOR FIELD

KENTARO YANO & HITOSI HIRAMATU

To Professor C. C. Hsiung on his sixtieth birthday

1. Introduction

Let M be a connected Kaehlerian manifold of complex dimension n covered by a system of real coordinate neighborhoods $\{U; x^h\}$, where, here and in the sequel the indices h, i, j, k, \ldots run over the range $\{1, 2, \ldots, 2n\}$, and let $g_{ji}, F_i^h, \{_j^h\}, \nabla_i, K_{kji}^h, K_{ji}$ and K be the Hermitian metric tensor, the complex structure tensor, the Christoffel symbols formed with g_{ji} , the operator of covariant differentiation with respect to $\{_j^h\}$, the curvature tensor, the Ricci tensor and the scalar curvature of M respectively.

A vector field v^h is called a holomorphically projective (or *H*-projective, for brevity) vector field [1], [2], [5] if it satisfies

$$(1.1) \quad \mathcal{L}_{v}\left\{\begin{smallmatrix} h \\ j \end{smallmatrix}\right\} = \nabla_{j}\nabla_{i}v^{h} + v^{k}K_{kji}^{h} = \rho_{j}\delta_{i}^{h} + \rho_{i}\delta_{j}^{h} - \rho_{s}F_{j}^{s}F_{i}^{h} - \rho_{s}F_{i}^{s}F_{j}^{h}$$

for a certain covariant vector field ρ_j on M called the *associated* covariant vector field of v^h , where \mathcal{L}_v denotes the operator of Lie derivation with respect to v^h . In particular, if ρ_j is the zero-vector field, then v^h is called an *affine* vector field.

When we refer in the sequel to an *H*-projective vector field v^h , we always mean by ρ_i the associated covariant vector field appearing in (1.1).

In the present paper, we first prove a series of integral inequalities in a Kaehlerian manifold with constant scalar curvature admitting an *H*-projective vector field, and then find necessary and sufficient conditions for such a Kaehlerian manifold to be isometric to a complex projective space with Fubini-Study metric.

In the sequel, we need the following theorem due to Obata [4]. (See also [3].)

Theorem A. Let M be a complete connected and simply connected Kaehlerian manifold. In order for M to admit a nontrivial solution φ of a system