MANIFOLDS OF NEGATIVE CURVATURE

M. GROMOV

1. Statement of results

1.1. For a Riemannian manifold V we denote by $c^+(V)$ and $c^-(V)$ respectively the upper and the lower bounds of the sectional curvature, by vol (V) the volume, and by d(V) the diameter.

1.2. Let V be an n-dimensional closed Riemannian manifold of negative curvature and $c^{-}(V) \ge -1$. If $n \ge 8$, then vol $(V) \ge C(1 + d(V))$, where the constant C > 0 depends only on n.

Remark. This inequality is exact: For each *n* there exists an infinite sequence V_i with $d(V_i) \to \infty$, $i \to \infty$, and with uniformly bounded ratio vol $(V_i)/d(V_i)$.

Proof. Take a manifold V of constant negative curvature with infinite group $H_1(V)$ (see [8]) and a sequence of its finite cyclic coverings.

For n = 4, 5, 6, 7 we shall prove here the following weaker result: vol $(V) \ge C(1 + d^{1/3}(V))$. Notice that arguments from § 4 show that for $n \ge 4$ an *n*-dimensional manifold V with $-\varepsilon \ge c^+(V) \ge c^-(V) \ge -1$, $\varepsilon \ge 0$, satisfies: vol $(V) \ge C(1 + d(V))$ where C depends on n and ε .

1.3. Theorem 1.2 sharpens the Margulis-Heintze theorem (see [6], [4]) stating the inequality vol $(V) \ge C = C_n$. In this paper we prove the following generalization.

1.3A. Let X be a complete simply connected manifold of negative curvature with $c^{-}(X) > -1$. Let Γ be a discrete group (possibly with torsion) of isometries of V. Then vol $(X/\Gamma) \ge C$, where C > 0 depends only on dim (X).

This fact is still true for manifolds of nonpositive curvature with $c^{-}(X) \ge -1$ and negative Ricci curvature (see [5]). In the homogeneous case this is the Kazhdan-Margulis theorem (see [9]).

The finiteness theorems

1.4. Combining \S 1.2 with Cheeger's results (see [1], [4]) we immediately conclude:

For given $n \neq 3$ and C > 0 there exist only finitely many pairwise non-diffeomorphic closed *n*-dimensional manifolds V with $0 > c^+(V) \ge c^-(V) > -1$ and vol $(V) \le C$.

1.5. Counter-example for n = 3. There exists an infinite sequence of 3-di-

Received July 26, 1976.