HOMOGENEOUS CONVEX DOMAINS OF NEGATIVE SECTIONAL CURVATURE

HIROHIKO SHIMA

Let Ω be an affine homogeneous convex domain in a finite dimensional real vector space V, not containing any full straight line. Then we know that Ω admits an invariant volume element

$$v = K dx^1 \wedge \cdots \wedge dx^n$$

and that the canonical bilinear form

$$Dlpha = \sum\limits_{i,j} rac{\partial^2 \log K}{\partial x^i \partial x^j} dx^i dx^j$$

defines an invariant Riemannian metric on Ω , [2], [6]. In this note we prove the following theorem.

Theorem. An affine homogeneous convex domain Ω not containing any full straight line has negative sectional curvature with respect to $D\alpha$ if and only if Ω is the interior of a paraboloid:

$$y^0 - rac{1}{2}\sum\limits_{i=1}^{n-1}{(y^i)^2} \ge -1$$
 ,

where $\{y^0, y^1, \dots, y^{n-1}\}$ is an affine coordinate system of V.

We first recall the construction of clans from homogeneous convex domains, [6]. In the following we assume that a homogeneous convex domain Ω contains the zero vector 0. Let G be a connected triangular affine Lie group which acts simply transitively on Ω , and let g be the affine Lie algebra corresponding to G. For $X \in \mathfrak{g}$, we denote by f(X), q(X) the linear part and the translation vector of X respectively. Since q is a linear isomorphism of g onto V, for each $x \in V$ there exists a unique $X_x \in \mathfrak{g}$ such that $q(X_x) = x$. We define an operation of multiplication in V by the formula

(1)
$$x \cdot y = f(X_x)y$$
 for $x, y \in V$.

Then we have

Communicated by Y. Matsushima, June 30, 1975.