TOPOLOGY OF THE COMPLEX VARIETIES $A_{s}^{(n)}$

I. DIBAG

1. Introduction

Define, for $s \leq[n / 2]$,
$\tilde{V}_{n, 2 s}$: manifold of ordered $2 s$-tuplets of linearly independent vectors in Euclidean n-space R^{n},
$\tilde{A}_{s}^{(n)}$: space of 2-forms in $R^{\dot{n}}$ of rank $2 s$, $\tilde{f}_{s}^{(n)}: \tilde{V}_{n, 2 s} \rightarrow \tilde{A}_{s}^{(n)}: \quad$ map given by

$$
\tilde{f}_{s}^{(n)}\left(y_{1}, \cdots, y_{2 s}\right)=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}
$$

$V_{n, 2 s}$: Stiefel manifold of orthonormal $2 s$-frames in R^{n},
$A_{s}^{(n)}=\tilde{f}_{s}^{(n)}\left(V_{n, 2 s}\right)$: subspace of $\tilde{A}_{s}^{(n)}$ of "normalized" 2-forms in R^{n} of rank $2 s$,
$f_{s}^{(n)}: V_{n, 2 s} \rightarrow A_{s}^{(n)}: \quad$ the restriction of $\tilde{f}_{s}^{(n)}$ to $V_{n, 2 s}$.
It was proved in [4] that the maps $\tilde{f}_{s}^{(n)}$ and $f_{s}^{(n)}$ induce the principal $S p(s ; R)$ and $U(s)$-bundles respectively, and that $\boldsymbol{A}_{s}^{(n)}$ is a strong deformation retract of $\tilde{A}_{s}^{(n)}$.

One may, equivalently, define $\boldsymbol{A}_{s}^{(n)}$ as the space of normalized complex s substructures of R^{n}, i.e., pairs (p, J) where p is a $2 s$-plane in R^{n} and J is a normalized complex structure on $p\left(J \in O(p), J^{2}=-1\right)$.

To see the equivalence, let $w \in A_{s}^{(n)}$. Then $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ for an orthonormal $2 s$-frame $y=\left(y_{1}, \cdots, y_{2 s}\right)$. Let p be the $2 s$-plane spanned by y. For $x \in p$, let $d_{x}: p \rightarrow \Lambda^{2} p$ be forming wedge products with x, i.e., $d_{x}(z)$ $=x \wedge z$, and $\delta_{x}: \Lambda^{2} p \rightarrow p$ be its "adjoint". Define a linear transformation J on p by $J(x)=\delta_{x}(w), x \in p$. Then $J\left(y_{i}\right)=y_{i+s}$ and $J\left(y_{i+s}\right)=-y_{i}, 1 \leq i \leq s$. Thus $J \in O(p), J^{2}=-1$. Conversely, a normalized complex s-substructure J, $J \in O(p), J^{2}=-1$, can be represented by the matrix $\left[\begin{array}{cc}0 & -I_{s} \\ I_{s} & 0\end{array}\right]$ relative to some orthonormal $2 s$-frame $y=\left(y_{1}, \cdots, y_{2 s}\right)$ on p. Hence J corresponds to $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ in $A_{s}^{(n)}$.

It follows from either definition that $A_{s}^{(n)}=S O(n) / U(s) \times S O(n-2 s)$ for $s<n / 2, A_{s}^{(2 s)}=O(2 s) / U(s)=I_{s} \cup I_{s}^{\prime}$ where $I_{s}=S O(2 s) / U(s), A_{1}^{(n)}=\tilde{G}_{n, 2}$ $=Q_{n-2}(C)$ where $\tilde{G}_{n, 2}$ is the oriented 2-planes in R^{n}, and $Q_{n-2}(C)$ is the complex quadric of dimension $n-2$.

The spaces $A_{s}^{(n)}$ appear as "fibres" in global obstrüction problems involving

[^0]
[^0]: Received May 1, 1973, and, in revised form, January 16, 1974.

