TOPOLOGY OF THE COMPLEX VARIETIES $A_s^{(n)}$

I. DIBAG

1. Introduction

Define, for $s \leq \lfloor n/2 \rfloor$,

- $\tilde{V}_{n,2s}$: manifold of ordered 2s-tuplets of linearly independent vectors in Euclidean *n*-space R^n ,
- $\tilde{A}_{s}^{(n)}$: space of 2-forms in \mathbb{R}^{n} of rank 2s,

 $\tilde{f}_s^{(n)}: \tilde{V}_{n,2s} \to \tilde{A}_s^{(n)}:$ map given by

$$f_s^{(n)}(y_1, \dots, y_{2s}) = y_1 \wedge y_{s+1} + \dots + y_s \wedge y_{2s}$$
,

 $V_{n,2s}$: Stiefel manifold of orthonormal 2s-frames in \mathbb{R}^n , $A_s^{(n)} = \tilde{f}_s^{(n)}(V_{n,2s})$: subspace of $\tilde{A}_s^{(n)}$ of "normalized" 2-forms in \mathbb{R}^n of rank 2s,

 $f_s^{(n)}: V_{n,2s} \to A_s^{(n)}:$ the restriction of $\tilde{f}_s^{(n)}$ to $V_{n,2s}$.

It was proved in [4] that the maps $\tilde{f}_s^{(n)}$ and $f_s^{(n)}$ induce the principal Sp(s; R)and U(s)-bundles respectively, and that $\mathcal{A}_s^{(n)}$ is a strong deformation retract of $\tilde{\mathcal{A}}_s^{(n)}$.

One may, equivalently, define $A_s^{(n)}$ as the space of normalized complex ssubstructures of \mathbb{R}^n , i.e., pairs (p, J) where p is a 2s-plane in \mathbb{R}^n and J is a normalized complex structure on p ($J \in O(p)$, $J^2 = -1$).

To see the equivalence, let $w \in A_s^{(n)}$. Then $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ for an orthonormal 2s-frame $y = (y_1, \dots, y_{2s})$. Let p be the 2s-plane spanned by y. For $x \in p$, let $d_x : p \to A^2 p$ be forming wedge products with x, i.e., $d_x(z)$ $= x \wedge z$, and $\delta_x : A^2 p \to p$ be its "adjoint". Define a linear transformation Jon p by $J(x) = \delta_x(w), x \in p$. Then $J(y_i) = y_{i+s}$ and $J(y_{i+s}) = -y_i, 1 \le i \le s$. Thus $J \in O(p), J^2 = -1$. Conversely, a normalized complex s-substructure J, $J \in O(p), J^2 = -1$, can be represented by the matrix $\begin{bmatrix} 0 & -I_s \\ I_s & 0 \end{bmatrix}$ relative to some orthonormal 2s-frame $y = (y_1, \dots, y_{2s})$ on p. Hence J corresponds to $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ in $A_s^{(n)}$.

It follows from either definition that $A_s^{(n)} = SO(n)/U(s) \times SO(n-2s)$ for s < n/2, $A_s^{(2s)} = O(2s)/U(s) = I_s \cup I'_s$ where $I_s = SO(2s)/U(s)$, $A_1^{(n)} = \tilde{G}_{n,2}$ = $Q_{n-2}(C)$ where $\tilde{G}_{n,2}$ is the oriented 2-planes in \mathbb{R}^n , and $Q_{n-2}(C)$ is the complex quadric of dimension n-2.

The spaces $A_s^{(n)}$ appear as "fibres" in global obstruction problems involving Received May 1, 1973, and, in revised form, January 16, 1974.