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ON TWO NOTIONS OF STRUCTURAL STABILITY

IVAN KUPKA

Introduction

In the literature one can find two notions of structural stability. First the
original one given by Andronov and Pontriagin (see [1],[2], [5]) stated for
vector fields, that is, for the actions of the additive group of real number R on
a manifold M. This definition says roughly that an Inaction on M is structurally
stable if, for any other R-action close-to, in the sense that the vector fields
generating these actions are close, there exists a homeomorphism of M onto
itself mapping the orbits of the first action onto the orbits of the second. This
definition can readily be extended (see below § 1), to actions on M of a given
real Lie group G in particular G — Z — additive group of all integers.

Another definition was proposed more recently by Smale (see [8] and [9])
for Z-actions on M. Such an action is generated by an difϊeomorphism φ: M
—> M. Smale's definition is roughly that φ is structurally stable if any difϊeomor-
phism ψ sufficiently close to φ in the C^topology is topologically conjugate to
φ. Smale's definition, which can also be extended to action on M of any given
real Lie group G, seems more restrictive than the one of Andronov and
Pontrjagin.

The purpose of this note is to show that in the case G = Z, the two defini-
tions are equivalent if the dimension of M > 1 and M is connected.

In § 1 we give precise statements of the two definitions, first in the case G =
Z (which is the one of interest to us) and then in the general case, for com-
parison sake.

The author wants to thank Professors S. Smale and J. Palis for reading a
first draft of this paper and for making some interesting comments which he
included.

1. Definitions of structural stability

A C^Z-action on a compact C°° manifold M is generated by a C^difϊeo-
morphism φ: M—*M.

Definition 1 (Andronov-Pontrjagiή). A C^diffeomorphism φ\M-*M is
structurally stable if for any ε > 0 there exists a neighborhood U of φ in
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